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A simple example of quantum transport in a classically chaotic system is studied. It consists in a single state
lying on a regular islanda stable primary resonance islartiat may tunnel into a chaotic sea and further
escape to infinity via chaotic diffusion. The specific system is realistic: It is the hydrogen atom exposed to
either linearly or circularly polarized microwaves. We show that the combination of tunneling followed by
chaotic diffusion leads to peculiar statistical fluctuation properties of the energy and the ionization rate,
especially to enhanced fluctuations compared to the purely chaotic case. An appropriate random matrix model,
whose predictions are analytically derived, describes accurately these statistical properties.
[S1063-651%98)02301-0

PACS numbd(s): 05.45+b, 32.80.Rm, 42.50.Hz

I. INTRODUCTION rated islands or it can wander very far aw@pssibly lead-
ing, e.g., to ionization as in atoms driven by external radia-
Quantum systems with classically chaotic counterpartsion).

possess unique characteristic features as summarized, e.g., ininterestingly, this “chaos-assisted” tunneling mechanism
[1,2]. Following the semiclassical approach, one often relateposseses unique features typically absent in the standard
guantum properties of a system to its classical motion, usingbarrier” tunneling of quantum mechanics, such as a great
for example, a direct comparison of phase-space portraits &ensitivity to the variation of external parameters manifesting
the classical dynamics and wave-function quasiprobabilitytself in fluctuations of observable quantities. Previous work
representations in the phase spacea Husimi or Wigner  considered mainly model one-dimensional time-dependent
functiong [1,3,4]. Even in the case of globally chaotic dy- systemg9-11] or model two-dimensional autonomous sys-
namics, individual unstable classical trajectories can be réems[12—15. A similar problem in the scattering case has
traced by stationary quantum eigenfunctions that ares, peen discussed on a kicked model systssh We shall
“scarred” by .the plassm_al SOIUt'Oﬁ.S]' When the classical consider here a realistic, experimentally accesgilnough
phase space is mixdgartially chaotic and partially regulgr simplified; see beloysystem, namely, the hydrogen atom

?‘S‘m”?‘f se_paration into regular and irregular_wave funCtior‘%IIuminated by microwave radiation. Instead of considering
's possible in the quantum wor(@]. Stable regions of phase tunneling between two regioritori) mediated by the chaotic

space (tori) lend themselves to semiclassical Einstein—t t betw th hall rath ider the sindl
Brillouin-Keller quantization, yielding both the approximate ransport between theém, we shall rather consider the single
tunneling process out of the stable island. Then the chaotic

eigenenergies and the corresponding wave functiafis e X e o
Similarly, there are “irregular’ wave functions in the region diffusion process will lead to ionization. While in the former

of chaotic classical motion. Some of them can be associatetpSe the probability may flow periodically between two re-
with residual structures of classically regular motion such a§ions linked by the tunneling coupling, in our problem the
cantori while others are practically structureless. In low-Process is irreversible and constitutes the mechanism of the
dimensional systems, Kolmogorov-Arnold-Moser tori pro- decay.
vide impenetrable borders; the only way regular and irregu- The paper is organized as follows. Section Il contains the
lar wave functions may communicate with each other is bydescription of the systems studiétie hydrogen atom in the
guantum-mechanical tunneling processes. In higherfield of a microwave radiation of either circular or linear
dimensional systems, classical Arnold diffusion provides anpolarization) and a general presentation of the ionization via
other mechanism of transport, a process that is, howevechaos-assisted tunneling. Section Ill presents a simple model
typically quite slow [8]. On the other hand, quantum- for the description of the fluctuations present in the decay,
mechanical tunneling through impenetrable borders of claseatalyzed by chaos-assisted tunneling. We present there the
sical mechanics may be quite effective. Once the particlelistribution of resonance widths and consider also the distri-
tunnels from, say, a stable island into the surrounding chaotibution of energy shifts of the single, initially localized state
phase space, it can visit distant regions following the classielue to the coupling to other “delocalized” states and, via
cally chaotic transport mechanism. In particular, it can tunnethese states, to the continuum. This theory is confronted with
into some other stable island thus providing the couplinghe numerical data obtained for the hydrogen atom in the
between two wave functions localized on distinct and sepafield of microwave radiation of either circular or linear po-
larization in Sec. IV. Finally, we present conclusions in Sec.
V while the Appendix contains the details of the derivation
*Permanent address. of formulas presented in Sec. Ill.
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Il. NONDISPERSIVE ELECTRONIC WAVE PACKETS the polarization plane, the dynamics of the wave packets and
AND THEIR IONIZATION their properties are qualitatively not affected by the reduced

In order to obtain the simplest study of quantum transporE|menS|onaI|ty[20,24]. In the following, we shall present

. L esults obtained within such a reduced two-dimensional
through a chaotic sea, one should use an initial state as | fodel

calized as possible in phase space as, for example,_ a F"i”" The time dependence of the Hamiltonian describing the
mum wave packet Iogallzed on a classical stable eq“"'bf'F’”bPM ionization of H atoms is explicitly removed by trans-
point. Unfortunately, in atomic systems, no stable equlllb'forming to the coordinate frame that corotates with the mi-

rium point of the elelctro'n outside the nu_cleus exists. crowave field[21,22, where it readsin atomic units
A simple alternative is to use a nonlinear resonance be-

tween the internal motion of the electron and an external p?

driving force. Recently, interesting objects have been pro- H= > F+Fx—w/z, @
posed in the studies of hydrogen atoms illuminated by mi-

crowave radiation of either linegl 7] or circular[18] polar- \ith /, the angular-momentum operator.

ization: the so-called nondispersive wave packets. The a; the center of the principal resonance island between
corresponding cla§5|cal dynamics picture corre_sponds to thee Kepler and the microwave frequency, a periodic orbit
stable resonance island embedded in a chaotic sea. For tgists whose period exactly matches the period of the micro-
motion contained within the principal 1:1 resonance betweegaye. |n the laboratory frame, this is a circular orbit with
the Kepler frequency of the unperturbed Rydberg electron,qi,sx such that

and the frequency of the driving field, the frequency of the

electronic motion is locked on the external microwave fre- 1 =

guency. Semiclassically, a wave packet localized on such a +—=X. 2
. . . . . 2y,2 2

regular island will be confined to it modulo the exponentially X" o

decaying tails of the wave function that may extend into the

chaotic region. In a quantum treatment, one finds wave packi/€ introduce the effective principal quantum numbg(not

ets that are really single eigenstates of the atom dressed Bipcessarily an integecorresponding to this main resonance:
the microwave field, i.e., single eigenstates of the corre- Ne= =13 3)
sponding Floguef19] Hamiltonian[17,20. They are local- 0 '

ized in all spatial dimensions and propagate along the clagyye to the classical scaling of the Coulomb problzs],
sical trajectory in the same way a classical particle wouldpetween the two parametessand F only one is necessary
For a generic casée.g., linear polarization microwaves, or, {5 tune the dynamics classically. Thus we define quantities

more generally, any time-periodically perturbed sysféi,  (position and microwave electric figldcaled with respect to
it undergoes periodic deformations that faithfully follow the No:

change of shape of the resonance island over one period,

repeating the same shape every period. Only in the case of x0=xn52=Xw2’3,
circular microwave polarization, the shape of the wave (4)
packet eigenstate does not change. This is due to the fact that Fo= an: Fo 43

the time dependence may be removed from the Hamiltonian

of the problem by a transformation to the frame rotating withF, represents the ratio of the external microwave field to the

the field[21-23. Coulomb field of the nucleus on the unpertubed resonant
As mentioned above, a finiteé value leads to quantum- circular orbit. The classical dynamics depends only on this

mechanical tunneling from the island to the chaotic sea surparameter. The scaled radiggof the resonant circular orbit

rounding it. Then the electron gains energy from the drivingis the solution of the scaled equation

field and eventually becomes ionized by a process classically

known as chaotic diffusive ionization. Since many different

paths link the initial wave packet with the continuum, its — TFo=Xo. ®)

ionization time(or its reciprocal, the ionization rate or reso- %o

nance width fluctuates strongly with the parameters of the

problem, the microwave frequenay or |t§ amphtudeF an equilibrium point. This point is stable if the dimensionless

[24]. Therefore, these wave packets are ideally suited for @tability parameter

guantitative study of the ionization promoted by chaos-

assisted tunneling.

In the corotating frame, the resonant orbit corresponds to

1
9= 53" 3 )
A. Circularly polarized microwave 0

Let us consider first the conceptually simpler case of hyis chosen in the interval 8/q<1 [18]. Then the existence
drogen atoms illuminated by a circularly polarized micro-of a wave packet localized in the vicinity of the fixed point is
wave (CPM) [18,20,24. The problem is fully three dimen- ensured in the semiclassical limit. It appears in the rotating
sional; however, as it has been shown elsewf20e24], one  frame as a stationary eigenstate of the Hamiltortiaocal-
can consider the quantum dynamics in the space restricted tped around the equilibrium point and in the laboratory frame
the polarization plane of the microwave field. While this ex-as a localized wave packet following a circular trajectory
cludes possible excitations in the direction perpendicular tavithout spreading.
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The energies of the wave-packet eigenstates in the rotatlassical scaling: The finité value introduces another scale
ing frame are giveliin a harmonic approximation around the into the problem, say, the energy of the state or the number

stable fixed pointby [20] of photons necessary for the ionization. We shall see that this
has important consequences for the characteristics of the ion-
1-4q ,, L L ization process: The statistical properties of the widths de-
EOZF‘U +(N;+ 2o, —(N_+ 3o, (7) pend onng.

We shall present the numerical data for both circular and
linear polarization of the driving field simultaneously. Thus,

with before presenting the data, we review the wave-packet prop-
erties in a linearly polarized microwavePM) [17].
2—-0q*Va(99-8)
W= w 8 . . .
2 B. Linearly polarized microwave

the normal mode frequencies of the locally harmonic Hamil- If the atom is irradiated by an electromagnetic field of
q Y linear polarization defining thez axis, the angular-

Quanta i these modes, In he folowing e shall consider tndOMENuIM projectiom on the feld axis s a good quantum
AT . : ” . ~_humber, due to the rotational symmetry of the Hamiltonian
ionization of the “ground-state” wave packet corresponding

to N, =N_=0. Such a wave packet can be expanded over p2

the usual atomic eigenstates. It is a coherent superposition of H= 5T +Fz cog wt). 9
mainly circular state$20]. The frequencyw is close to the

resonance between atomic circular states with principabne is therefore left with two spatial degrees of freedom and
quantum numbers—n=1 with n=n,. Thus these states he expiicit, time periodic dependence of the Hamiltonian

are strongly coupled by the microwave field. It can be showny 5 cannot be eliminated. However, the temporal periocicity
that, for such a frequency, the overlap of the wave packefs the problem(for constant driving field amplitud€) al-

state with circular states is, for a sufficiently high, Gauss- |4\ys for the application of the Floguet theorem and the iden-
ian distributed with a maximum at, and the width of the  ification of the eigenfunctionlsy;) of the atomin the field as

order of Vho. . . . solutions of the stationary Floquet equatidr]
To find the wave packets numerically, we diagonalize the
time-independent Hamiltonian in the rotating frafdg in a (H=id)| ) =Ei| ), (10

Sturmian basi$23]. The so-called complex rotation method
[26] allows us to take exactly into account the coupling towhere spatial coordinates and time are treated now on an
the continuum. We refer the reader to R3] for a descrip- equal footing. The Floquet theorem guarantees that the
tion of the technical details. Let us mention here only that aeigenfunctiong;) are periodic with the periodl =27/ w of
diagonalization yields complex energi&—il’;/2, where the driving field and form a complete basis of the problem.
the real part&; are the positions of the resonances, while theThe Floquet states with quasienergigsare nothing but the
I'; correspond to their widths, i.e., their ionization rates. In“dressed states” of the atom in the fie]80].
this approach, spontaneous emission from the wave-packet Again, when Coulomb attraction and driving field ampli-
eigenstates to lower-lying states is neglected. This is a reaude become comparable, the classical dynamics of the Ry-
sonable approximation as they are composed of mainly cirdberg electron turns chaotic and phase space is divided into
cular states that have very long spontaneous lifetimes, typregions of regular and irregular motion. At sufficiently large
cally of the order of several £Qperiods. In all calculations field amplitudes, only the principal resonance between the
discussed hereafter, the decay of wave-packet eigenstatesdrving frequency and the Kepler motion is left as (@itlip-
dominated by field-induced ionizatiofvia chaos-assisted tic) island of regular motion in the chaotic sg&7]. Unlike
tunneling andnot by spontaneous emissi$¢@7,28§|. the circularly polarized microwav€CPM) case, the stable
The present results are obtained from the diagonalizatioperiodic orbit at the center of the elliptic island is not char-
of matrices of size up to 200 000. We use the Lanczos algoacterized by a set of simple analytical expressions. However,
rithm [29] to extract few eigenvalues and the correspondinghe local oscillatory motion can be plugged into the form of
eigenvectors in the vicinity of the energy predicted by thea Mathieu equatiol31], the numerical solution of which
semiclassical expressigi). The wave-packet eigenstate is provides good estimates of the energy of the quantum-
then identified by its large overlap with the circular statemechanical ground state and of the first excited states of the
with principal quantum number closeitg=w “*and by its  local Hamiltonian[4,32]. The oscillator ground state is the
large dipole moment. Typically, due to the accuracy of thewave-packet eigenstate of the atom in the field and follows
semiclassical prediction, it is enough to extract a few eigenthe classical, periodic evolution of the principal resonance
values of the matrix. For our present purpose, it isdbeia- island[17,33. Depending on the value of the classical angu-
tion of the exact resonance position from the semiclassicdlar momentum and its projection on the symmetry axis, the
prediction and théonization ratethat are of great interest for wave packet may probe the Coulomb singularity and conse-

us. quently displays some transient dispersion that mimics the
For our statistical analysis, it is reasonable to collect theacceleration of the classical particle at the aphe[ibr.
data for afixed classical dynamics, i.e., dixed F, value Since, in the LPM case, the numerical detection of the

varying simultaneouslyp andF around some mean values. wave packet is less straightforward than for CPMs, we re-
On the other hand, quantum mechanics dustreserve the strict ourselves to the investigation of the hydrogen atom
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confined to one spatial dimension, along the field polariza
tion axis. As the driving field amplitude is increased, it is this
direction along which chaos is born in the full dynamics of
the three-dimensional atoftt7,34,35, and therefore this ap-
proximation will be sufficient for our present purposes.

The LPM case has the same scaling property as the CPI

—
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o

Energy Shift
(atomic units)

case: The classical dynamics depends only on the scaled fie __ g2 ; ; ; ; @
Fo=Fo 3 Numerically, the wave packets are identified § 10° | |

by their large (compared to other nearby Floquet states < o ‘mr‘ ﬂ‘ ‘, H\ m

overlap with the staténg) [36], which is resonantly coupled £ _1° | {

to its nearest neighbdmny+1) by the driving frequency. & % 107" \ ]
Similarly to the CPM case, the quasienergigsand reso- 8; (0)
nance widthd"; of the wave packets are used for the statis- £ £ 107" : : : '

tical analysis. All data samples are characterized by a fixe £ & 39 40 4 42 43

/3

value of the parametefF,, hence they correspond to the Effective Principal Quantum Number n, = &

same structure of classical phase space. For a given value ot

Fo, o (and, accordinglyF) has been scanned to give 1000 FIG. 1. Typical fluctuations of the widtkionization rat¢ and

eigenvalues peF value. the energy shiftwith respect to its unperturbed positjoof the
nonspreading wave packet of a hydrogen atom exposed to a circu-
larly polarized microwave field. The wave packet is a stationary

C. Numerical results state of the atom dressed by the microwave field and at the same
time a wave packet orbiting around the nucleus at exactly the mi-

versus the microwave frequency has already been IFesemcr wave frequency, without spreading. In the language of nonlinear
q 4 y P S ysics, the wave packet is at the center of the primary resonance

in [24] for a fl).(ed microwave amplitude. It dlsplays VeTY island between the microwave frequency and the internal Kepler
strong fluctuations over several 'orders of magnitude 1Ec)rfrequency of the electron. It is coupled to the surrounding chaotic
small changes of the frequendtypically of the order of 1 gia1e5 by tunneling and therefore has an ionization rate induced by a
part in 1000. These fluctuations, although perfectly deter-cpaos-assisted tunneling process that shows huge fluctuations when
ministic, look completely random and are strongly reminis-5 parameter is varied. The data presented are obtained for small
cent Of the Universal Conductance ﬂuctuations Observed iOariations of the effective principa| quantum nummraround 407
mesoscopic systeni87]. Indeed, the ionization width mea- a scaled microwave electric fiell,= Fng=0.0426, and a micro-
sures the rate at which an electron initially localized close tavave frequencyw=1/n3. To present both plots on a logarithmic
the stable resonant trajectory ionizes, i.e., escapes to infinitgcale(more convenient to show the fluctuations over several orders
In other words, the ionization width directly measures theof magnitudé we plot the absolute value of the shift rather than the
conductance of the atomic system from the initial point toshift itself.

infinity. In the quantum language, the ionization width is due
to the coupling(via tunnel effeck between the localized
wave packet and states lying in the chaotic sea surrounding
it. While the energy(or quasienergy in the LPM casef the
wave packet is a smooth function of the parameffeesd w,
[see Eq.(7)], the energies of the chaotic states display

The typical behavior of the wave packet ionization width

Importantly we must mention that the shifts plotted in Fig.
and used later for the statistical analysis are not obtained
directly from the difference between the resonance energy
and the semiclassical predictigqi@) as anticipated before.

complicated behavior characterized by level repulsion an hese differences show a bias: The average shift is nonzero.

strong avoided crossings. By chance, it may happen that, fdf indicates that although Ed.7) well predicts the wave-
specific values of the parameters, there is a quasidegenera@§Cket energyto within a fraction of the mean level spac-
between the wave-packet eigenstate and a chaotic statf9), the remaining difference is not solely due to the fluc-
There the two states are more efficiently coupled by tunneltuations. There is a slowly varying part in it that most
ing and the ionization width of the wave-packet eigenstaté®robably originates from the unharmonic corrections. The
increases. This is the very origin of the observed fluctuationdatter could be estimated; however, since in the LPM case we
Simultaneously, the repulsion between the two states shouldo not have any good semiclassical prediction, we find the
slightly modify the energyreal part of the complex eigen- fluctuating part of the shift in both cases by subtracting from
valug of the wave-packet state. A simple way of measuringthe exact quantum energies the smooth background. The lat-
this effect is to compute also the shift of the real part of theter is obtained by a low-order polynomial fit of the wave-
energy level with respect to its semiclassical posifiwhich ~ packet eigenenergies as a function of the paraneger
does not exhibit the repulsion from a near-degenerate)state To describe the fluctuationguantitatively which is the

As mentioned above, we study the fluctuations for a fixedmain aim of this study, we calculate the statistical distribu-
value of the classically scaling paramet@r, versus tions of the ionization width®(w) and of the energy shifts
no=w 3. Exemplary ionization width antevel shiftfluc- P(s). Typical distributions are displayed as histograms on a
tuations are presented in Fig. 1 on a logarithmic scale for thelouble-logarithmic scale in Fig. 2. The data are those of Fig.
CPM case. Note that both quantities fluctuate over severdl. The use of logarithmic scales is useful to show quantita-
orders of magnitude and that the widths are more sensitive ttively the fluctuations over several orders of magnitudes.
changes ofn,. Since the shifts can take both positive andFrom this figure, we immediately obtain the following quali-
negative values, the absolute value of shifts is plotted. tative conclusions.
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those used ipl4], that allows us to understand the properties
10 f of our shift and width distributions.

lll. STATISTICAL MODEL

-
o
T
L

We shall consider a simple statistical model amenable to
an analytical treatment. Despite its simplicity, we shall see
‘that it is capable of describing quantitatively the fluctuations
of resonance widths and shifts observed in the numerical
analysis of the microwave ionization of hydrogen atoms.

The model system is directly based on the understanding
we have of the origin of the fluctuations and follows the idea
already used if14]. The idea is to consider the wave-packet
eigenstate as coupled randomly to a set of chaotic stdées
scribed by random matrix thegrywhich are themselves ran-
domly coupled to the atomic continuum. More precisely, our
model consists of a single sta@) (representing a state lo-
calized on the elliptic islandcoupled(weakly) to the space

I
nN

Shift Distribution
)
O

Width Distribution
>

10 of N “chaotic,” irregular levels, which are close t®) in
— energy. The latter states are considered to be, strictly speak-
10 °10°10°10 10" 10 10 ing, resonances rather than bound states due to the mecha-
Width nism responsible for decag.g., the ionization of an atom

While we consider a single localized state in the model, there

FIG. 2. Distributions of thea) energy shifts andb) widths of ~ May be several other states localized on the same island.
the nonspreading wave packet of a hydrogen atom in a circularihyfhey will have typically much different energies and their
polarized microwave field. The data are those of Fig. 1. They ardnutual coupling via the chaotic states is negligible.
plotted on a double-logarithmic scale, which clearly shows the large The Hamiltonian matrix may be represented as an
fluctuations. Both the shiftactually the absolute value of the shift (N+1)X(N+1) matrix:
and the width have been rescaled to their typical values, as ex-
plained in the text. ( 0 a(V| )

. 11
(i) The distribution of energy shiftB(s) tends to a con- Where we have assumed that the energy of the localized state
stant ass— 0. sets the zero of the energy scale. The first vector in the basis

(i) Above some critical value, the distribution drops andrepresents the localized state, the followignes the cha-
decreases roughly algebraically wigh The slope is close to Otic states. In the chaotic subspace, the statistical properties
— 2, indicating aP(s)=1/s? behavior. of thg Hamiltonian are well rgpresented byl‘&.lth random

(iii) Finally, P(s) falls off abruptly above some value. ~ Matrix Ho. We shall deal vy|th problems with a preserved

(iv) The distribution of ionization width®(w) behaves (generalizegl time-reversal invarianceH, should belong,
algebraically withw at small width, with a slope close to therefore, to the Gaussian orthogonal ensenf{ti®E) of
—1/2. Hence the small widths are the most probable ones.'e@l symmetric matricef2,38|. The matrix elements ofi,

(v) Above some critical value, the distribution drops @re independent random Gaussian variables
faster, roughly with a W2 behavior. ,

(vi) Finally, similarly to the shift distribution, there is a (Ho)jj
final sharp cutoff. eXp 252

These conclusions are similar to the ones obtained in a P((Ho)ij)= 2” ,
slightly different physical situation, when two symmetric 2moj
regular islands are coupled to a single chaotic (sea Ref. ] ] o
[14] for a complete discussion of this physical situation With the variance satisfying
There, states lying on the regular islands appear in doublets 2,02
with even or odd parities with respect to the discrete sym- o2=(1+ 5_,)77 _ (13)
metry exchanging the two regular islands. The splitting of ! YN
the doublet is a direct measure of the chaos-assisted process
where the particle tunnels from one regular island, then difHereA is the mean level spacing between consecutive cha-
fuses in the chaotic sea, and finally tunnels to the other reguptic states close to energy 0.
lar island. This process is very similar to the one studied in Following a commonly accepted approd@$), the cou-
the present paper where the particle tunnels and then diffus@ing of the chaotic state to the continuum is introduced by
towards infinity. The splitting distribution observed in the decay matrix
[14,15 is indeed very similar to our shift distribution as
explalned below. [n the following section, we propose a W=Z|W)<W|, (14)
simple model, mainly based on physical ideas similar to 2

(12



57 IONIZATION VIA CHAOS ASSISTED TUNNELING 1463

where theN component real vectdW) describes the cou- completely loses its identity. It has been shown elsewhere
pling of the chaotic states to the continuum. As in R88], [40] that, in the perturbative regime, the localized state can
we take this vector to be composed of Gaussian distributelie interpreted as a soliton weakly interacting with the back-
random numbers with vanishing mean and unit variance. Thground of chaotic states, but essentially keeping its shape
real coefficienty measures the strength of the decay to thewhen a parameterfor example, the microwave field
continuum. Such a form implies that there is only one sig-strength is varied.

nificant decay channel for chaotic states. This is far from In the following, we will also assume that the ionization
obvious and, as discussed below, probably true only at relarates (widths) of the chaotic states are small compared to
tively low field strength. When there are several open iontheir mean level spacing, i.e., that the decay matvixEq.
ization channels, a convenient form of the decay matrix ig15)] can be considered as a pertubation. This implies

39

(39 v<A. 17)

M
w=> %|W[kl)<wlk1|, (15 Such a condition is nastrictly necessary, but it makes cal-
k=1 culations simpler. Physically, it means that the various cha-

otic resonances are isolated. This is a typical situation in our
whereM denotes the number of open chann@legeneracy gy stem: the ionization of an atom in the presence of micro-

: K
of the continuum and theN component real vectofV( ) 0 driving for not too strong microwave amplitudes.

describe the coqpling of the chaotic states to channels \yjith the above assumptions, motivated by the physics of
k=1,... M. Again, we take these vectors to be composedpe process studied, the shift and width of the localized state
of Gaussian distributed random numbers with vanishingyay phe obtained using the lowest nonvanishing order of per-
mean and unit variance. The real coefficients measure the y,rhation theory. Such an approach is justified unless an ac-
strength of the decay to continuukn _ cidental degeneracy between the localized state and one of
In a similar way, the(rea) N-component vectofV) in  the eigenstates of the matrik, occurs. Neglecting such de-
Eq. (11) describes the coupling of the localized stf# to  generaciegwhich only affect the tail of the distribution; see
the chaotic states. Each component |9 is taken as a Sec. |v A below and performing an average over the ran-
Gaussian distributed random number of zero mean and ungom matrix ensemble defined by E@.1) makes it possible
variance. The coefficient in Eq. (11) is a measure of the g extract the analytic expressions both for the distribution of
strength of the coupling between the localized state and thenits and for the distribution of widths. The details of the

chaotic subspace. _ _ derivation are given in the Appendix. We give here only the
If the coupling to the continuum is neglecteg0), the  jmportant results.
model describes a single bound state randomly coupléd to  The shift distribution is obtained along a similar way to

chaotic states. This is exactly the model succesfully used ipeyyraz and Ullmd15] and takes the form of a Cauchy law

[14] to describe the splitting of doublets induced by chaos-

assisted tunneling. 1 s
The model has several free parameters: the mean level P(s)=—2—2,

spacing between chaotic statAs the strength of the cou- Tspts

pling with the ionization channey, and the strength of the .

coupling to the localized state. There is a trivial scaling with

law of the HamiltonianH [Eq. (11)], which implies that, .

except for a global multiplicative factor, there are only two Sp=——. (19

relevant dimensionless parametes$A and y/A in the A

model. For several open channels, the relevant paramQtelrr%portantly, this result is independent of the degree of cor-

areo/A and /A, k=1,... M. relation among the eigenvalues of tHg matrix: The same
Due to the interaction with chaotic resonances, the state 9 9 ? ’

|0) is not an eigenstate of the full Hamiltonian[Eq. (11)]. result is obtained for an uncorrelated spectr@ifnisson-like

. . ; distributed eigenvalues, physically corresponding to cou-
However, in most cases, the coupling to chaotic resonances. ; - w "
ing of the localized state with a set of “regular” states,

is weak and the true eigenstate does not differ very muck . . .
from |0): This is the perturbative regime that we shall con—InStead of chaotic ones as in the model described gbave

. . ' . : : X GOE, or a picket-fencéharmonic-ocsillator spectrum 15].
sider in the rest of this paper. This regime is obtained Whepl’his Cauchpy distributié:n is the same 25 t?]e ong{ob]tained
the coupling is much smaller than the mean level spacin

between chaotic states. i.e %14,13 in the absence of ionization.
T The situation is a bit more complicated for the width dis-
o<A. (16) tribution. For Poissonian distributed eigenvaluedHgf (un-
correlated spectrum a similar Cauchy distribution is ob-
We will see below that this condition is always satisfiedtained for thesquare rootof the width, corresponding to the
for the real physical systerinydrogen atom plus microwave following distribution of widths(see the Appendix
field) for the microwave fields studied in this paper. At very
high field, when the nondispersive wave packet is destroyed, Ppoissof W) = ‘/VTO
this pertubative approximation should break down. The Poisso
physical interpretation is clear: If E¢L6) is not satisfied, the
localized state is spread over several eigenstated aind  with

(18)

g



1464 ZAKRZEWSKI, DELANDE, AND BUCHLEITNER 57

4oty 0.4 :
3 0.3 r (a) a
For a matrixHy belonging to the GOE, the distribution is =
slightly more complicatedsee the Appendix a 02r )
b=
13/2 ' ’ ’ = 01 r -
2 W32 In(w+ 1+ w/wg) + wwh(w+wp) 2
PGOE(W): 2 1\3/2 !
T w(w+wp) 0.0 ‘
(22) -10 -5 0 5 10
Energy Shift
with -§ 10° ; : :
2
, 7720'2')/ w? 23 = 10°
= = — (2]
Wo A2 2 Wo- (23 2
C =R
Although it is distinct from Eq.20), it has in fact quite a cf) 10
similar shapesee Fig. 4. In particular, if Pgog is rescaled ,
by a global multiplicative factor of about 20%, it is almost 10 107 10‘_1 1(')0 1(‘)1
indistinguishable fronPpss0, Many statistics are necessary
to determine which of the two distributions is the correct one IEnergy Shiftl

for a given data sefsee also Sec. IV
.We can _also obtain the.dlstrlbytlon Of.W'.dths for the cha- FIG. 3. Comparison between the distributions of the energy
otic states in the perturbative regime. This is the well-known

« lai " . 1-4 h h shifts of the nonspreading wave packet of a hydrogen atom in a
nonoverlaping resonances” regimg41-43 where the circularly polarized microwavéarge bins histograimwith the dis-

widths are distributed according to a Porter-Thomas distribUg iy tion obtained for our random matrix mod@mall bins histo-

tion gram. The data are those of Fig. 1 with the same rescaliag.
Linear scale; the agreement is excellent. The two histograms follow

1 — exactly a Cauchy distributio18). (b) Double-logarithmic scale,
Ppr(w) = = exp(—w/2w), (29 which emphasizes the long tail of the distributions. Again, the
\/WV agreement is remarkable. The dashed line is the pure Cauchy dis-
o tribution predicted in the perturbative regime and differs from the
wherew denotes the average width. For small Ppr di-  numerical result at large shifts.

verges asv~ 2, while for largew it decays exponentially.
tical, namely, the breakdown of the perturbative approxima-
IV. ANALYSIS OF THE DATA tion.

Nevertheless, we can go beyond the perturbative scheme,
using the statistical model described in Sec. Ill, but calculat-
ing numerically the shift and width distribution. This has

The exact expression(48—22, obtained in the perturba- been done by numerical diagonalization of the complex
tive regime reproduce qualitatively most of the statistical dis-Hamiltonian, i.e., of random matrices corresponding to Eg.
tributions numerically observed for the shift and width of the (11), generated according to the rules given above. A diago-
nondispersive wave packet of the hydrogen atom in a micronalization of a matrix of siz&l =80 yields a single shift and
wave field; see Fig. 2. For the shift distributid®(s), the  width for chosen values ofi/A and y/A. Using different
distribution is constant near 0 and decays like? Bt larges. random matrix realizations we accumulate up to 50 000 data
The only difference is the absence of the sharp cutoff in thdor comparison. We have verified that the distributions ob-
perturbative expression. This can be easily understood: Thigined do not depend on the matrix side
large energy shifts correspond to quasidegeneracies betweenln Fig. 3 we show the numerical results for the shift dis-
the localized state and one specific chaotic state, i.e., to theibution obtained for the hydrogen atom in a circularly po-
immediate vicinity of an avoided crossing. There the simplelarized microwave field with the perturbative analytical ex-
pertubative scheme breaks down and the actual shift remaingession for our random matrix modglpure Cauchy
finite as the perturbative expression diverges as the invergdistribution) [Eq. (18)] and with the full nonperturbative re-
of the unperturbed spacing between the chaotic and localizesllt using our statistical model, both on a linear scale, well
states. Hence the actual distribution has to fall faster than thsuited for small and moderate shifts, and on a double loga-
perturbative one at large shifts, as numerically observed. rithmic scale, well suited for the tail of the distribution at

The width(ionization rate distribution behaves similarly. large shifts. As expected, the perturbative analytical expres-
Both the initial 1v'? regime and the following W re-  sion reproduces the numerically observed distribution, ex-
gime observed for the wave packet are well reproduced bgept for the exponentially small tail at a large shift. The full
the simple statistical model. Again, the difference is the abnonperturbative distribution is found to be in excellent agree-
sence of the cutoff for very large widths. The reason is idenment with the numerical data for the real system, the hydro-

A. Quantitative analysis of the fluctuations
with the statistical model
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It is remarkable that both the shift and the width distribu-
tions are so well reproduced by the random matrix model.
This proves that our simple statistical model carries the es-
sential part of the physics. The data presented are the first, as
far as we know, manifestation of the chaos-assisted tunneling
process in a realistic, experimentally accessible systems.

Even if the perturbative expressid@0) incorrectly de-
scribes the nonperturbative large width tall, it is clear that the
initial w~ %2 decrease, similar t®pr [Eq. (24)] is followed
by a regime ofw~%? behavior. The length of thisv~%?
behavior provides interesting information about the system.
For strong couplingg=A, the localized statf) is strongly
mixed with the chaotic state. Thus its width distribution
10" R would be the same as that of other resonance states, i.e., a

Porter-Thomas distribution. Hence the %2 part there
100 ¢ (b) L shrinks to zero and the powert1/2 law is followed imme-

5 N diately by the exponential tail. The relative importance of the

w~ %2 part in the width distribution indicates, therefore, the
L L presence of the weak-coupling, perturbative regime. Com-
10 10 10 pared to the pure chaotic state where fluctuations of the
Width widths are already known to be large, the effect of additional

tunneling is to shift some part of the width distribution to-

FIG. 4. Same as Fig. 3, but for the widtla) Linear scale for the wards small widths while keeping the exponential cutoff,
distribution of the square root of the width. The dashed line is thethat is, to increase the fluctuations. In the perturbative limit,
analytical resul{Cauchy distributiopy Eq. (20), for a Poisson spec- the fluctuations become so large that the average wdith
trum and the continuous solid line the analytical re<@R) for a verges
GOE spectrum. The agreement with the Poisson prediction is The success of the statistical model allows to give a com-
slightly better, although all distributions are very simildb)  plete physical interpretation of the observed data.

Double-logarithmic scale showing the agreement of the random ma-  (j) The smallest shifts and widths, observed for
trix model with the real system, even for the tail of the distribution.

0.8 T : \

Distribution

Width Distribution

107 L .
10°  10°

The dashed line is the analytical perturbative expresg6)n which s<Sp, (25)
differs from the numerical result in the tail. The dotted line is the
Porter-Thomas distributio(24) for a system without chaos-assisted wW<Wp, (26)
tunneling; it describes the exponentially small tail of the distribu-
tion. with probabilities behaving, respectively, &% and w2,

. . _ ) ) .. correspond to the localized state lying far from quasidegen-
gen atom in a circularly polarized microwave field, which gracies with one of the chaotic states. Then the localized
proves that our simple statistical model actually catches thgate s weakly contaminated by the various surrouding cha-
physics of the chaos-assisted tunneling phenomenon. A simsiic |evels. For example, its shift is the sum of the effect of
lar conclusion has been reachfih] for doublet splittings  |eve| repulsion by the various chaotic states. Chaotic states
induced by chaos-assisted tunneling. o with higher (lower) energy push the localized state down

_ In Fig. 4 a S|m|lz_1r analysis is done for the_ dls_trlbutlon of (up) in energy, which globally results in a small shift with a
widths, on both a linear and a double-logarithmic scale. Onandom sign. The width results from the interference be-
the linear scale, instead of the width distributi@®) itself,  tween the elementary ionization amplitudes contributed by
which diverges at zergsee the Appendix we plotted the  the various chaotic states. As there is only one open decay
distribution for the square root of the width, which tends to achannel, the amplitudes, not the probabilities, have to be
constant value at zero. As can be seen, the agreement dggeq. As they are essentially random uncorrelated variables,

again excellent over the full range, the perturbative expresme interference is mainly destructive, producing small
sion being inaccurate in the tail only, as expected. In additioRyigths with a large probability.

to the perturbative analytical expressi@®) we have also (i) The intermediate shifts and widths, observed for
drawn the distribution expected when the states in the cha-

otic sea have eigenergies described by a Poisson distribution Sp<S<0, (27)
rather than a GOE on@0). Both distributions are similar far

from the origin and differ by about 20% a=0. At first Wo<W<7, (28)

glance, it seems that the Poisson curve agrees slightly better

than the GOE curve, which is somewhat surprising and nowith probabilities behaving, respectively, 852 andw ™32,
understood as chaotic motion surrounding the stable islandorrespond to one chaotic state being much closer in energy
suggests the choice of the GOE. However, the deviation is @b the localized state than to the other chaotic states, but
the border of statistical significance. In the double-nevertheless sufficiently far to be coupled only perturba-
logarithmic plot, we have also added the Porter-Thomas distively. Then the single coupling to this particular chaotic
tribution (24), which reproduces correctly the tail at large state dominates both the shift and the width of the localized
widths. state.
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(iii) The largest shifts and widths, observed for With such a definition, the typical width is robust, only
weakly sensitive to the tail of the distribution.
s=0, (29 A similar definition holds for the typical shift, slightly
modified to take into account thatcan be either positive or
negative:
w=1y, (30
J EP d ! 32
correspond to the quasidegeneracy between the localized 0 (Ishdlsl 2° (32)

state and one chaotic state, with strong nonperturbative mix- ' o _ o
ing between the two. This is where the exponentially de- For the perturbative distributions in the statistical random

creasing tails are observed. matrix model, the typical widths and shifts can be calculated
In the latter two cases, as one chaotic state is dominanffom Egs.(18), (20), and(22):
approximate expressions for the distributions can be obtained 5
by a simple two-level model. Although the expression of the 5= o
shift and the width are then easy to obté&imgonalization of A
a 2x 2 complex matrix, we have not been able to perform
analytically the averaging over the ensemble of random ma- ~ 4o%y )
trices. w= for a Poisson spectrum, (33
AZ
B. Extraction of the relevant physical parameters ~ 5.48%7?%y
from the statistical data w= Y for a GOE spectrum.

The simplest possible measures of the fluctuations of a
quantity are typically its average value and the variance. InFor the full non-perturbative random model distributions, as
spection of the perturbative distributions for both the shiftslong as the basic hypotheses of small coupliags.(16) and
[Eq. (18] and the width$Eq. (20)] suggests, however, some (17)] are true, we carefully checked that the typical widths
caution. Indeed, the average value of the width is not definednd shifts are not significantifwithin 10 or 20 % different
(the corresponding integral divergemd the same is true for from the previous analytic expressions.
the variance of the shifthe average value is zero due to the  For a real physical system such as the wave packets in the
symmetry of the distribution This is because of the exis- hydrogen atom exposed to a microwave field, we can reli-
tence of long algebraic tails & and 1v®? in the distribu-  ably extract from the statistical data the typical width and
tions. The variance of the shift and the average value of thehift. We have also compared the numerically obtained dis-
width are infinite because of the diverging contributions oftributions with nonperturbative distributions of our statistical
these tails. This is an example of unusual random process@sodel and performed best fits of the former by the latter.
such as Ley flights [44], where rare events play the domi- Again, we checked that the typical width and shift for the
nant role. Ultimately, it is because, in perturbation theory,best fit do not differ by more than 10 or 20 % from the direct
the contamination of a state by its neighbors is proportionaimeasures. This implies that the typical shift and width can be
to the ratio of the coupling matrix element to the energysafely used to extract from the statistical distributions the
difference and consequently decreases slowly: Even a faelevant physical parametess(coupling between the local-
distant level can have a large effect. ized state and the chaotic stgtesd y (ionization widths of

For the full nonperturbative distributions, the exponentialthe chaotic states Slightly different values are obtained if
cutoff at large values destroys the divergence of the variouthe Poisson or GOE expressions are used. In the following,
integrals, and average values and variances, as well as highse have used the GOE expression.
moments of the distributions, are well defined and could be In fact, only 0?/A and the dimensionless parametg¢n

calculated. Their precise values, however, depend cruciallyfrom the ratiow/s) can be easily extracted. Obtaining the
on the position of the cutoffs. Hence distributions identicalgther dimensionless parametefA or o and y themselves
for _small widths (shifts) and only differing at large widths requires knowledge of the mean spaciigbetween chaotic
(shifts may have completely different average values andesonances. Surprisingly, this is not straightforward. To un-
variances. Calculating such quantities requires a very acCyjerstand the problem, consider the diagonalization of the
rate knowledge of the tails of the distributions. The averagg-joquet Hamiltonian for the LPM case. The number of states
values and the variances are thus fragile and difficult to Ca'present in a single Floquet zone depends on the number of
culate on a real system such as the hydrogen atom in @ Mshoton blocks included in the diagonalization. When it is
crowave field; they do not provide us with the most interestincreased, new states appear in the vicinity of the wave
ing physical information. _ _ packet state corresponding to either low-lying atomic states
Rather than the average values, we prefer to define typ'C"{\{Nith very different energy but shifted upward by an integer
values. The typical widtlw lies at the middle of the distri- times the photon frequengwr highly excited states or reso-
bution, such that half of the widths are larger and half ofnancegshifted downwaril These states should not contrib-

them smaller, i.e., ute to the determination ok since they have a vanishing
5 overlap with atomic states building the wave packet. Hence
w _ } the mean level spacind between chaotic states is a some-
P(w)dw= . (3D | i .
0 2 what ambiguous quantity. However, as will be seen at the
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FIG. 5. Typical shift(with respect to the unperturbed energy

level) and width(ionization rate of the nonspreading wave packet FIG. 6. Nonspreading wave packet of a hydrogen atom in a

of the hydrogen atom in a circularly polarized microwave. Eachcircularly polarized microwave. The tunneling rate to fag sur-

point in the plot is extracted from the analysis of a distribution rounding chaotic sea/A and(b) chaotic ionization rate/A of the

similar to the one in Fig. 2 built from several hundred independenthaotic states is as extracted from the data in Fig. 5, using our

diagonalizations of the Hamiltonigi) at neighboring values of the  simple statistical model based on random matrix theory. These two

field strength and frequency, aroung=40. The statistical analysis quantities are dimensionleggescaled to the mean level spaging

of each distribution is done as in Figs. 3 and 4. The typical values ofind smaller than 1 in the perturbative regime. The tunneling rate

the energy shiftcircles and width(squaresglobally increase with  has large oscillations when the scaled microwave field is varied, as

the microwave field strength, but with bumps that are obviouslya consequence of secondary resonances occurring in the primary

correlated. The long-dashed line represents the mean energy levisland where the wave packet is localized. The chaotic ionization

spacingA between chaotic levelgall quantities are plotted in rate increases very rapidly at lo®,, as a consequence of the

atomic unitg. The typical width is smaller than the typical shift, destruction of barriers slowing down the chaotic diffusion towards

itself smaller tham\, which proves that the data are obtained in thejonization, and further saturates at a rather constant value when

perturbative regime where chaos-assisted tunneling is only a smathaotic dynamics is reached.

perturbation. For details, see the text.
function of the scaled electric field,=F (40)*. Each point

beginning of Sec. IV C, all our results are obtained either inn this curve results from the numerical diagonalization of
the perturbative regimé y<A or close to it, and the mean several hundred matrices, each of typical size several tens of

spacingA is just a scaling parameter. A rough estimateof thousands, for neighboring values of the microwave field

is obtained assuming that only states with similar principaS'€ngth and frequency. The stafistical model described

quantum number, let us say differing by less than a factor bove makes it possible to separate the intrinsic huge fluc-

are efficiently coupled. Experimental results on hydrogen a,['_[’uations of the ionization rate and extract values of the vari-

oms in a linearly polarized microwave figld5] suggest that ous couplings. This is very C'_eaf in Fig._5, where both the
the physics of ionization is entirely dominated by states withtyPical width and the typical shift are relatively smooth func-

principal quantum number less tham@(when the experi- t|ons” of r’zhe fie]!d stre;gth,h with sﬂort-rang%fﬂuctt(;atiqgsh
mental cutoff is changed from infinity torg, no important smaller than a factor 2, whereas the raw shift and widt

change is observedAt low microwave field, the number of display fluctuations over at least three orders of magnitude;

efficiently coupled states is smaller, but this is not the regime?ompare Fig. 5 with Fig. 1.

of chaotic diffusion we are interested in. Chaotic motion re- | In Fig. 5"onethcantheailly_ chlecrlf_f:hbat ﬂ:? ty;?tlcal W'd;h 'Sf
quires overlap between classical resonance islands, i.e., effivays smafier than the typical shitt by at least one order o

cient coupling between states of largely different princi al'mag.nitude. AS the r_atio Of. the ty\{o A [see Eq(33)], thi§
guantum pnur%bers. This gives the ?ollilnwing appfoximgte:;nglrlfjlg}a:r:gﬁqtl;,aedI%leznlslg\fer:ﬂssf.igérs;r;:See%ggag;t:lhz
mean level spacing, used later in this paper: dashed ling which, using Eq.(33), shows that inequality
1 (16) is also verified. Altogether, this proves that our data are
A~ —. (34)  effectively obtained in the perturbative regime.
ng The third observation in Fig. 5 is that neither the typical
width nor the typical shift is a monotonical increasing func-
. o tion of the microwave field strength, but displays various
C. Tunneling and chaotic ionization rates bumps. These bumps are obviously strongly correlated,
Figure 5 shows the typical width and shift for the non- which indicates that they are due to variations of the tunnel-
spreading wave packet of the hydrogen atom in a circularlyng rate o rather than variations of. Indeed, in Fig. 6 we

polarized microwave field at frequenay=1/(40)%, as a plot the dimensionless parameteréA and y/A deduced
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FIG. 7. Plots of the typical shift and width of the nonspreading Scaled Microwave Field F,

wave packet, as in Fig. 5, for a hydrogen atom in a linearly polar-

ized microwave field, aroundy=40. Again, the typical values of

the energy shifcircles and width(squaresglobally increase with FIG. 8. Same as Fig. 6, but for a hydrogen atom in a linearly
the microwave field strength, with bumps that are obviously correpolarized microwave. Again, the bumps (@ o/A are related to
lated. The long-dashed line represents the mean energy spiacingthe secondary resonances in the system, whijley/A is more or
between chaotic level&@ll quantities are plotted in atomic units less constant as soon as the chaotic regime is reached.

The typical width is smaller than the typical shift, itself smaller than
A, which proves that the data are obtained in the perturbative re;

gime where chaos-assisted tunneling is only a small perturbation.for n0:440’ a_s a function of the sgaled. microwave f'e_ld
Fo=Fng. Again, these data are obtained in the perturbative

regime[see Eqs(16) and(17)] and display obviously corre-

from the typical shift and width. It confirms that the tunnel- lated bumps. The dimensionless tunneling ratd and cha-

ing rate o/A is a slowly increasing function of the field

\ . . otic ionization ratey/A, shown in Fig. 8, indicate that the
strength with various structures. The bumps occur precisel umos are due to secondary resonances inside the primar
at values of the field strength where there is a resonanc P y P Y

between the eigenfrequencies, and »_ [Eq. (8)] of the resonance island between Fhe external microwave frequgncy
motion in the vicinity of the stable fixed point supporting the &"d the internal Kepler motion. A comparison between Figs.
nonspreading wave packet. This has been analyzed in Re_q’. ar_1d 8 shows that both the tunneling ratg and_ch_aotlc ion-
[40], where it is shown that the bump aroufig=0.023 |;at|on rate are qf the same o-rder of magnitude in linear and
corresponds to the 1:4 resonance and the bump just belo@ircular polarization, with similar changes versig, up to
F,=0.04 to the 1:3 resonance. In the vicinity of such a resoP0ssibly a roughly constant multiplicative factor. This is a
nance, the classical dynamics is strongly perturbed and sonf@nfirmation of the experimental observation that very simi-
secondary resonant tori and islands appear. The bumps |ar ionization threshold frequency dependences are observed
Fig. 6 are just quantum manifestations of an increased trané? the two cases provideH, is appropriately rescale@6].
port rate induced by these classical resonances. Not surpriés in [46] we observe that larger values Ief are necessary
ingly, ¥/A, which represents the ionization rate of statesin LPMs to result in the behavior similar to that for CPMs.
surrounding the resonance island, is practically not affected To make the study complete, we have also studied how
by these resonancésnly small residual oscillations are vis- the typical width and the typical shift change when the prin-
ible aroundF,=0.04). On the other hand, it increases veryCipal quantum numben, or, equivalently, the microwave
fast up to scaled fieldF,~0.04, where it saturates to a frequencyo=1/nj is changed. The result is shown in Fig. 9
roughly constant value. This has a simple semiclassical exXor the circular polarization, for a fixed scaled microwave
planation. BelowF,~0.04, chaos is not established aroundfield F,=0.0426. In this plot, the classical dynamics of the
the principal resonance island and there still exist some regsystem is absolutely fixed, the only varying parameter being
lar tori further in phase space that strongly slow down thethe effective Planck constarit.s=1/ny. The striking phe-
classical chaotic diffusion. Above 0.04, only the principal nomenon is the fast decrease of both the typical width and
resonance island survives and the chaotic ionization rate igypical shift with ny. In the logarithmic scale of Fig. 9, it
quite large ¢/A is of the order of 0.1 and only slowly appears as a straight line indicating an exponential decrease
increases with the field strength. with ng. Also, the two quantities decrease along parallel
Strictly similar observations can be made for the hydro-lines, which, according to E¢33), indicates that the tunnel-
gen atom exposed to a linearly polarized microwave fieldjng rate o is responsible for this decrease. In Fig. 10 we
which proves that they are not specific to one system undeplotted the dimensionless tunneling rad¢A and chaotic
study, but rather general properties of chaos-assisted tunnebnization ratey/A as a function ofny. Note thata/A is
ing followed by chaotic diffusion. Figure 7 displays the typi- plotted using a logarithmic scale andA on a linear scale.
cal width and typical shift of the nonspreading wave packefThe exponential decrease is of the form
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FIG. 9. Same as Fig. 5, but plotted for fixed classical dynamics Principal Quantum Number N,

(fixed F;=0.0426) as a function of the effective principal quantum
numberny,=1/fi. Because the primary resonance island has a
fixed structure, the bumps visible in Fig. 5 are almost absent. Both  FIG. 10. Same as Fig. 6, but plotted for fixed classical dynamics
the typical shift and typical width decrease exponentially wigha  (fixed F,=0.0426) as a function of the effective principal quantum
signature of a tunneling process. The long-dashed curve shows thimbern,=1/%.. (a) The tunneling rater/A decreases exponen-
mean energy spaciny between chaotic states. tially with ny (note the logarithmic scalewhich proves that the
process involved is actually tunneling. From the rate of the expo-
nential decrease we are able to extract the “tunneling action”
S=0.06+0.01. (b) The chaotic ionization rate/A smoothly and

(35 ‘ , :
slowly evolves withn, (note the linear scaleapproximately as%.

S
olA=exp(—ngyS) =exp{ - —) )
heff

D. Limitations of the model

with S~0.06+0.01 (extracted from the plot Although the simple statistical model well describes the
Such a dependence is typical for a tunneling procgss. fluctuations of the width and shift of the nonspreading wave
then represents the tunneling action from the stable fixegacket for a range of scaled microwave fieldFq(
point where the wave packet sits in the chaotic region sur<[0.03,0.08 for LPMs andF,e[0.02,0.06 for CPMs, both
rounding the resonance island. If complex orbits are uSed, for ny around 40, the region where experiments are usually
can be thought of as the imaginary part of the action of adone, additional difficulties appear for lower and higher field
complex tunneling orbit49,50. In our realistic system, find- values.
ing such complex orbits is much more difficult than in the  For lowerF, values, a statistically significant part of the
few model systems where this analysis has been done. Waata show very small widths, at the limits of the numerical
have not been able to find the complex path associated witprecision. At the same time, plots of the wave packets simi-
the tunneling process, but our purely quantum results maijar to those shown ih20] suggest that the states are more
provide a guide in this search, as they show that the imagiextended, extending far from the stable island. The situation
nary action has to be of the order of 0.06 feg=0.0426. then may not correspond to a clear-cut case of the chaos-
On a linear scalésee Fig. 1)1 the dimensionless chaotic assisted tunneling process. Our LPM data indicate that in
ionization ratey/A is a slowly increasing function af;. A such cases the singularity for small widths is much stronger
simple classical analysis using the so-called Kepler maghanT ~*2 Similarly, in the CPM case, we did not present
[34], which is known to produce relatively good predictions the random matrix fit folF ;=0.038, as a significant part of
for the ionization threshold of Rydberg states by a micro-the data is affected there by a strong classical 1:3 resonance
wave field[23,47], predicts a linear dependence versiys  [40]. Thus we do not face a clear case of a single localized
while the numerical result seems rather a quadratic functiorstate but rather two strongly coupled localized states decay-
This discrepancy could be due either to the approximationing via a chaos-assisted tunneling process. Since such a case
done to obtain the Kepler map or to the fact that, for high s quite rare, we prefer to exclude it from the analysis and not
the statistical model used to extragtA [see Eqs(18), (20), to construct the extension of the random matrix theory. It
(22), and(33)] is no longer valid because several ionizationcould not be tested convincingly on a single case anyway.
channels are opefsee Sec. IV Most importantly, we could not extend the random model
Let us note that to get 800 data points fop=100 fits to higherF, values for a very simple reason. There we
(enough to determine the typical shift and widtiequires  observed indications of the opening of other ionization chan-
about 40 h of Cray J98 single processor CPU time. Thenels[see Eq(15)]. A typical signature of such a behavior is
results presented are, in this sense, quite cdtitly size of the disappearance of the singularity 12 i

in the distribution
diagonalized matrices exceeded 200 000 in this)case of the widths. To understand this, note that the typical



1470 ZAKRZEWSKI, DELANDE, AND BUCHLEITNER 57
scribed by the Cauchy layl8) independently of the opening
04 T T of additional ionization channels. Indeed, it is the case as
(@) - (b) exemplified in Fig. 11 for LPM and CPM wave packets.
Similarly, the opening of additional ionization channels is
0271 1 \ expected in the semiclassical limit. The limit is realized by
5 decreasing the microwave frequency; then the wave packet is
j H’%&‘. composed of circular states of highag. While the data
0.0 5 0 5 5 0 5 corresponding to the single-channel decay have been ob-
Energy Shift tained forng=40 atF,=0.0426, we observed the opening of
‘ ‘ ‘ the second channel for the safAg starting atn,=60. Fig-
1 ure 1Xe) presents the histogram of the square root of the
) width for ng=90 and shows the existence of at least two
1 open channels. Again the corresponding shift distribution is

not affected and is well described by the Cauchy distribution
[Fig. 11b)].

Shift Distribution

0.8

(e)
0.4

Distribution

o 2 40 2 40 2 4
Square Root of Width V. PHYSICAL INTERPRETATION AND CONCLUSIONS

We have presented a statistical theory of ionization cata-
distribution of the square root of the dimensionless width for thelyzed. by Chaos'a.SSISted “?'””e“”g' The cor_respondmg physi-
nonspreading wave packet of a hydrogen atom in a microwavgal picture is built of a single state,'locallzed on a gtgble
field. The distributions of the square root of the width deviate from'SIand’ and Couple(ﬂquantu_m mecha_nlcally, due to a finite
our simple statistical model, which predicts a Cauchy law, becaus¥@lue of#) to the surrounding chaotic sea. Once the tunnel-
several ionization channels are opened at high field strength or fdPd into the sea takes place, the diffusive chaotic excitation
largen,. On the contrary, as predicted by the model, the distribu-l€ads finally to ionization.
tions of shifts remain close to Cauchy distributidiselid lines in A random matrix theory model allows us to determine
panels(a)—(c)] and are not sensitive to the number of open chan-analytically the distribution of the energy shifimduced by
nels. () and (d) correspond to a circularly polarized microwave the interaction with the chaotic geaf the localized state, as
field, no=40, F,=0.068; (b) and (e) correspond to a circularly well as the distribution of its width&onization ratey in the
polarized microwave fieldr,=0.045, butn,=90, i.e., for a much  perturbative limit. Nonperturbative corrections may also be
smaller average frequenay=1/n3, which is deeper in the semi- understood and estimated. We concentrated on the simplest
classical regime; an¢t) and (f) correspond to a linearly polarized case of single-channel ionization: The model then is charac-
microwave field,n,=40, F,=0.076. terized by few parameters only. In that case, the distributions
of both shifts and widths have long algebraic tails explaining
Porter-Thomas distribution behaves, for small widths, ashe large scale fluctuations of both quantities. These fluctua-
I'™M2=1 " with M being the number of open channpdd,43.  tions are a characteristic feature of chaos-assisted tunneling
In the chaos-assisted tunneling process leading to ionizatioprocesses. Fluctuatiorfand universal properties of fluctua-
while the full distribution differs from the Porter-Thomas tions) are well established properties of chaotic systems. In
distribution, as exemplified earlier for the single-channelthe ionization brought about by chaos-assisted tunneling, the
case, the small width functional behavior is similar in bothcombination of a weak tunneling process with chaotic cou-
cases. pling to the continuum increases dramatically the range of
The study of the available data reveals that the opening ahe fluctuations, by extending the distribution considerably
the second and possibly the third ionization channel appeatswards extremely small widths, i.e., metastable states.
gradually with the increasing microwave amplitudt. The developed theory has been confronted with numerical
Thus the different possible ionization channels are not ofiata obtained for the shifts and widths of nonspreading wave
equal importance, i.e., they are not equival@ntthe lan-  packetgstates localized on a stable 1:1 resonance island be-
guage of the random matrix theof89]). To build the ran- tween the Kepler frequency of a Rydberg electron and the
dom matrix model of the process one then needs to introduceequency of an externally applied microwave field of either
additional free parameters describing the strength of the coudinear or circular polarization a system accessible to present
pling to the additional ionization channels, i.e., various val-experiments. The numerical data have been obtained for sim-
ues for they, in Eq. (15). Although such a procedure is quite plified models of the atom: a one-dimensional atom in LPMs
straightforward, it is clear that fitting these parameters to twand a two-dimensional atom in CPMs. This allowed us to
data setqshifts and widths provides little information and study the frequency range well in the experimental region:
must be ambiguous. Typical distributions of the square roofhe important atomic states building the wave packet corre-
of the width obtained for large microwave amplitudes arespond to the principal quantum numbers used in the experi-
presented in Fig. 11 for LPM and CPM wave packets. Notements. The principal reason for the simplification is that fully
the presence of the hole for small widths. three-dimensional numerical calculations, although possible
On the other hand, since in the perturbative limit the levelfor a single set of parameters as exemplified by us before
shifts depend only on the real coupling between the localizefi24], are still prohibitive for present day computers. More
state and the remaining chaotic subsp@Eegs. (19) and importantly, however, the statistical properties of nonspread-
(33)], one can expect that the shifts will be still well de- ing wave packet states are not affected by the reduced di-

FIG. 11. (a)—(c) Dimensionless shift distribution an@)—(f)
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mensionality of the atom as tested by us for the threecoupling with the family of decaying states, should present
dimensional CPM case. huge fluctuations. An example is given in nuclear physics by

It turns out that the statistical theory developed describethe so-called superdeformed nucl&il] where the ground
very well the numerical data in the range of the single chanstate of a superdeformed nucleus can only decay by coupling
nel decay, which makes us confident that it contains the ed0 highly excited(hence chaoticstates of the nondeformed
sential ingredients of the physical process. The quality of théucleus. Our model then predicts the distribution of lifetimes
fits allows one to extract order from chaos, that is, to extracff superdeformed nuclei.
from strongly fluctuating quantitiesee Fig. 1 the physical
parameters describing the coupling of the nonspreading wave
packet to the chaotic statésinneling rat¢ and the ionization
rate of chaotic states. These parameters exhibit reasonably CPU time on a Cray C98 computer has been provided by
smooth behavior. For example, we have shown that secondPRIS and RZG. Laboratoire Kastler Brossel de I'Universite
ary classical resonances inside the regular island increase tRéerre et Marie Curie et de I'Ecole Normale Stipare is
tunneling rate. As an unambiguous signature of a tunnelinginite Associe 18 du CNRS. J.Z. acknowledges support of
process we also could demonstrate the exponential decreak8N under Project No. 2P03B 03810. The additional sup-
of the tunneling rate with the principal quantum number. port under the bilateral collaboration schefdeZ. and D.D).

Let us emphasize the importance of the fluctuations of thef the French Embassy in Poland, Project No. 76209, and the
ionization rate(width) of nonspreading wave packets in the Program International de Coapgion Scientifique(CNRS
hydrogen atom. In a real experiment, it is likely that the Project No. 408, is appreciated.
atoms will experience various values of the microwave field
strength, either because of spatial inhomogeneities or be-
cause they are prepared by a slow increase of the microwave APPENDIX: DERIVATION OF SHIFT AND WIDTH
strength as explained i8], and more or less average the DISTRIBUTIONS

short range fluctuations of the ionization rate. In the total, the \ye gerive here the shift and width distributions for the

residual ionization of the atom will be given by the average,angom matrix model described in Sec. Ill. Starting from the
ionization rate, a quantity that is dominated by the fluctuay,miitonian (11) we want to compute the complex eigen-

tions towards large ionization rates and can be significantly,5| e close to zero. The real part will be the desired shift and

larger than the typical ionization rate. For example, for theyice the imaginary part taken with the minus sign the de-

data in Fig. 1 discussed in this paper, the average ionizatiog.oq width.
rate is about 6.4 times larger than the typical ionization rate. \ye are interested in the case where the real coupfing

In the I_imit of the perturbative regime, the r.atio of the WO 5nq the imaginary coupling are sufficiently small for the
even diverges. This is an example of physical processes as

avv fligh h he physi faf ¢ > 0calized state not to be strongly mixed with the chaotic
Levy flights where the physics of a fluctuating system iSqiaies If this condition is not fulfilled, the localized state
dominated by rare events.

; - . cannot be assigned to a given eigenstate of theHuthatrix
From a practical point of view, the present study also tells, g g J

us that the lifefimes of the nonspreading wave packets eithq%nd the shift and width are ill-defined quantities. In the fol-
. h . h e limit wh h
in CPMs or in LPMs are rather long. Indeed, foy— 60 and wing, we thus consider the perturbative limit where bat

andy are much smaller thais. Typically, the localized state

F0=d0_.0426(tr|1ese ve_llues are rr(]aprgsentativef of what could b% then weakly coupled to the chaotic sea, itself weakly
used In a real experiment, with microwave frequency around.,, 1o o the continuum. It may happen that the localized

30 GHz and microwave field amplitude of the order of 10state is accidentally almost degenerate with a chaotic eigen-

V/cm) the typical lifetime of the nonspreading wave packetState ofH,, bringing back the problem of assigning the

in CPMs, due to ionization catalyzed by chaos-assisted turEtrongly mixed state. However, this is a rare event, which, as

neling, is of the order of several microseconds, that is abmﬁ is shown below, affects the tails of the distributions only.

100 000 Kepler.periods. However, ﬂuctuation§ by one or twq, e generic case, the couplings are weak and the energy
orders of magnitude are expected around this typical valu hift and the width can be calculated perturbatively.

:.Efvf.n the dlon?est Ilfettlmes shoulq b.e shofr';e]r thadn thef na}tura There are two small parameters for the perturbative analy-
etime, due 1o spontaneous emission, of the order of a acg;g namely /A and y/A. At first order in these small pa-

tion of a second. At higheny=100, the typical ionization rameters, there is no effect on the energy of the localized

”fe%rg]e iSI of the (;)rd(;,;r of iev;:ral mirlllisecr?no:i, .., 10 5tate(no diagonal elementOn the other hand, the localized
< 10" Kepler periods, but still shorter than the lifetime in- 50 i5 contaminated at first order ifA by the chaotic

duced by spontaneous emissif2B8]. Hence, for practical : ~ .
experiments in CPMs, spontaneous emission should not beS{ates. The perturbed eigenstiiy can be written as

problem. In LPMs, spontaneous emission is a slightly stron-

ger effect, but largely dominated by chaos-assisted tunneling _ 1

ionization forny=<100[27]. |0)= |0>+UH_|V>' (A1)
Finally, the physical situation and the model described 0

here are not restricted to atomic nonspreading wave packets.

It should describe physical systems where a given state ighere|0) denotes the unperturbed localized state Afjdis

weakly coupled to a dense family of completely differentthe N-component vector describing the coupling of the local-

other states that can decay on a rather long time scale. Théred state to the chaotic states. It can be also expanded on the

the effective decay rate of the initial state, induced by theeigenstate$e;) of Hy with eigenvalue€; as
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|0)=[0)+o (A2)  case where the spectrum Hf, is a set ofuncorrelatedei-
genvalues, i.e., a Poisson spectrum. Then all quantities in the
This admixture in the eigenstate results ifrea)) energy numere_ltors are uncorrelated random Qauss_ian variables a_nd
shift at second order, i.e., proportional 43, given by denominators are uncorrelated energies with mean density

1/A. In this case, the calculation can be done exactly as

E (BilV)| i) trix. Before studying this case, let us consider the simpler
i <IN E

1 N (| V)2 shown in Refs[15,52 and the distribution is a Cauchy dis-
s=— 0'2< V‘H— V> =—02), —g - (A3 tibution whose half-width is proportional to the average ab-

0 =1 ! solute value of the numerator, that is,
Also, as the imaginary coupling iV [Egs.(11) and (14)] 1 s,
has nonzero diagonal elements, this implies a nonzero imagi- ProissoS) = — 5 (A7)
nary part of the energy at order’y or, more precisely, a T Spts
width given by with

1]\ S (W) (eiV)|® o &l V)P
(Ad)

where the overbar denotes the average value over the random
Sincew appears as the square of a simpler quantity.e., matrix ensemble. Here it is simply the variance of the com-
ponents ofV), which is 1 in our mode{see Sec. I)l. Hence

w=x2, (A5) )
. e
with x given by, So= A (A9)
1 W| o di|V Similarly, one gets
. "’<W‘_’V>:”" 5 (WX oIv)
Ho iZIN E; 1 %
(AB) PpoissohX) = — 2. 2 (A10)
T X5+ X
we will consider in the following the statistical distribution
of x rather thanw. with
To obtain the statistical distributions within our random _—
matrix model, one has to average over the random ensemble, Y= 77 o 7|<W|¢i><¢i|v>|_ (A11)
i.e., over the various Gaussian random variablesNileom- 0 A

ponents of |[V), the N components of(W), and the o
N(N+1)/2 independent matrix elementsdf,. Because of ~The average over the random ensemi@iaussian integral
the orthogonal invariance ¢1,, the averaging oveV) and ~ gives a 2ir factor, resulting in

|W) is straightforward. Thus the distribution of shift is es- 20y

sentially the distribution of diagonal elements ofi}/ while Xo= 7. (A12)
the distribution ofx (square root of the widbhis essentially A

the distribution of matrix element of Hj;, between two sta-

L . For the width itself, we obtain the distribution given in Sec.
tistically independent vectors. Il [Eq. (20)].

Since we are interested in the situation wherg a large \yie now turn to the random matrix case, whetg is a
number of chaotic states are coupled to the localized statgangard real symmetric random matrix belonging to the
we will take the limitN— <, keeping the mean level spacing Gog. |n Ref.[53], Brouwer introduced a slightly different
equal to a constank and keepingy and o fixed, such that ;|55 of random matrices, namely, the Lorentzian orthogonal

the average coupling between a chaotic state and the |°Caéhsemble(LOE), which has the Lorentzian probability dis-
ized state is independent df. Then, in the sums in EQS. ipution

(A3) and(A6), there are more and more terms that contribute

as N is increased, but corresponding to larger and larger _ \? N(N+1)/4 T L'(i) def (A2+ H2)~(N+ D12
energy denominators B{ so that the total sum has a well- izin L(i/2) '
defined limit asN—o. Yet, in this limit, the scalar product ' (A13)

(WIV)y=3(W|¢;}{¢;|V) appears as the sum of the product

of independent Gaussian variables, which typically average@here\ is a parameter describing the width of the distribu-

to a small quantity. In other words, in tié—co limit, |V)  tion.

and |W) appear as independent orthogonal vectors, so that As shown in Ref[53], although the LOE has different

the distribution ofx values is essentially the distribution of global statistical propertiege.g., density of statg¢drom the

nondiagonal elements of Hf. Corrections due to nonexact GOE, it has locally the same joint probability distribution

orthogonality will modify the distribution at order/only.  function of the eigenvalues and consequently the same spac-
The calculation of the sums in Eg#3) and(A6) is not  ing distribution, the same short range correlation functions,

completely straightforward because the various energies iatc. The mean level spacing close to the center of the spec-

the denominators areorrelatedif Hy is a GOE random ma- trum (energy equal to zejas
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\N7r The distributions obtained in the various cases agree ex-
A= N (Al4)  actly with numerically calculated distributions from a large
number of realizations of the Poisson and GOE random en-
Hence, to calculate the shift and the width distribution, weSembles. Note that the distributions obtained here have long
can replaceH, by a random matrix of the LOE. The LOE tails with an algebraic decay agor x) tends to infinity. This
has the nice propertys3] that if H, is distributed according is unusual for quantities that are sums of statistically uncor-
to LOE, then 1H, is also distributed according to LOE with related individual terms and, as a consequence of the central
width 1/\. Morevoer, ifH, is distributed according to the limit theorem, have usually Gaussian distributions. The rea-
LOE, then every submatrix dfi, is also distributed accord- Son is that the central limit theorem cannot be used here
ing to LOE, with the same widtf53]. The price to pay for because the variance of each |nd_|V|duaI term in infinite; see
such nice properties is that one loses the statistical indepefRefs.[15,52. The latter property is due to theEl/depen-
dence of the various matrix elements valid for the GOE, i.e.dence, which decays only slowly for large.
P(H) cannot be factorized as a product of distributions of On & double-logarithmic scalsee Fig. 2the distribution
elementary matrix elements. However, this is not a problen®f shifts shows two different regimes: constant near the ori-
for the quantities we are interested in. The distribution ofgin and an asymptotic 47 behavior for large shifts. The
shifts is obtained straightforwardly, as it is a diagonal ele-crossover between the two regimes is 5_'1#50; Fhe latter
ment of 1H,, and hence a X 1 submatrix of 1#i,, which, ~ value [Eq. (A9)] corresponds to the typical shift due to a
from the two properties just described, is given by Eq]_s) chaotic level Iylng at a distanc& from the localized state,
for N=1 and\=m/NA. The result is exactly equal to the i-€., to the typical shift due to the nearest state. Hence large
Poisson result, i.e., the Caucligr Lorentzian distribution ~ energy shiftss>s, are due to situations where one chaotic
of Eq. (A9). level is much closer in energy thak. In such a case, one
For the width, the situation is slightly more complicated term is dominant in the surfA3) and a two-level approxi-
as we need to know the distribution of a nondiagonal elemation can be used, which produces the correst héhav-
ment of 1H,. The same trick works, but we have now to ior. On the other hand, the “constant” reginse<s, corre-
extract for the LOE matrix Ho a 2X 2 submatrix and con- Sponds to situations where the various terms in &®)
sider the distribution of nondiagonal elements, that is, averinterfere destructively, giving a total sum typically smaller

age over the two diagonal elements than the largest individual terms: This is an intrisically
“multilevel” situation where quantum destructive interfer-

P(le):j J P(H)dHy,dHoy, (A15) ences play an im_por_tant role_. Exactly the same thing takes
place for the distribution of widths. The largest widths in the

~322 regime are obtained when a single level dominates the

whereP(H) is given by Eq(A13) for N=2 and\ = 7w/NA. w 7 ! i
regime correspond to the multi-

The integral over diagonal elements is trivial. The result isSUM (A6) while the w™

the following distribution for the square root of the width: level situation. _
Finally, let us discuss what happens when the perturbative

2x, [ arcsintix/xg)xg? approach breaks down. This takes place when one chaotic
PcoeX) = 5 x’2+X2)[ + Xm : level is very close to the localized level, closer than their
(X 0 (A16) average couplingr. There the strong mixing between states
invalidate the expressions for the shiffq. (A3)] and the
with width [Eq. (A6)]. The actual shift and width do not diverge,
in contrast to the perturbative expressions. This means that
, 770'\/; the actual distribution cannot have an algebraic tail towards
Xo= 77 (A17) infinity, but should show a cutoff when perturbation theory
breaks down. As explained above, this takes place for one of
For the width itself, we obtain the distribution given in Sec.the E; of the order ofo, corresponding to

Il [Eq. (22)].

The GOE distributior{A16) has the same behavior as the —— (A18)

Cauchy distribution obtained for the Poisson ensemble

(A10), which is a constant value near=0 followed by a

1/x? decrease at large distance. In fact, the two distributions Weutoff= 7 (A19)

are very similar with slightly different widths and are almost

impossible to distinguish by eye. in agreement with our numerical observations.
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