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Ionization via chaos assisted tunneling
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A simple example of quantum transport in a classically chaotic system is studied. It consists in a single state
lying on a regular island~a stable primary resonance island! that may tunnel into a chaotic sea and further
escape to infinity via chaotic diffusion. The specific system is realistic: It is the hydrogen atom exposed to
either linearly or circularly polarized microwaves. We show that the combination of tunneling followed by
chaotic diffusion leads to peculiar statistical fluctuation properties of the energy and the ionization rate,
especially to enhanced fluctuations compared to the purely chaotic case. An appropriate random matrix model,
whose predictions are analytically derived, describes accurately these statistical properties.
@S1063-651X~98!02301-0#

PACS number~s!: 05.45.1b, 32.80.Rm, 42.50.Hz
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I. INTRODUCTION

Quantum systems with classically chaotic counterpa
possess unique characteristic features as summarized, e
@1,2#. Following the semiclassical approach, one often rela
quantum properties of a system to its classical motion, us
for example, a direct comparison of phase-space portrait
the classical dynamics and wave-function quasiprobab
representations in the phase space~via Husimi or Wigner
functions! @1,3,4#. Even in the case of globally chaotic dy
namics, individual unstable classical trajectories can be
traced by stationary quantum eigenfunctions that
‘‘scarred’’ by the classical solution@5#. When the classica
phase space is mixed~partially chaotic and partially regular!,
a similar separation into regular and irregular wave functio
is possible in the quantum world@6#. Stable regions of phas
space ~tori! lend themselves to semiclassical Einste
Brillouin-Keller quantization, yielding both the approxima
eigenenergies and the corresponding wave functions@7#.
Similarly, there are ‘‘irregular’’ wave functions in the regio
of chaotic classical motion. Some of them can be associ
with residual structures of classically regular motion such
cantori while others are practically structureless. In lo
dimensional systems, Kolmogorov-Arnold-Moser tori pr
vide impenetrable borders; the only way regular and irre
lar wave functions may communicate with each other is
quantum-mechanical tunneling processes. In high
dimensional systems, classical Arnold diffusion provides
other mechanism of transport, a process that is, howe
typically quite slow @8#. On the other hand, quantum
mechanical tunneling through impenetrable borders of c
sical mechanics may be quite effective. Once the part
tunnels from, say, a stable island into the surrounding cha
phase space, it can visit distant regions following the cla
cally chaotic transport mechanism. In particular, it can tun
into some other stable island thus providing the coupl
between two wave functions localized on distinct and se
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rated islands or it can wander very far away~possibly lead-
ing, e.g., to ionization as in atoms driven by external rad
tion!.

Interestingly, this ‘‘chaos-assisted’’ tunneling mechanis
posseses unique features typically absent in the stan
‘‘barrier’’ tunneling of quantum mechanics, such as a gre
sensitivity to the variation of external parameters manifest
itself in fluctuations of observable quantities. Previous wo
considered mainly model one-dimensional time-depend
systems@9–11# or model two-dimensional autonomous sy
tems@12–15#. A similar problem in the scattering case h
also been discussed on a kicked model system@16#. We shall
consider here a realistic, experimentally accessible~although
simplified; see below! system, namely, the hydrogen ato
illuminated by microwave radiation. Instead of consideri
tunneling between two regions~tori! mediated by the chaotic
transport between them, we shall rather consider the sin
tunneling process out of the stable island. Then the cha
diffusion process will lead to ionization. While in the forme
case the probability may flow periodically between two r
gions linked by the tunneling coupling, in our problem th
process is irreversible and constitutes the mechanism of
decay.

The paper is organized as follows. Section II contains
description of the systems studied~the hydrogen atom in the
field of a microwave radiation of either circular or linea
polarization! and a general presentation of the ionization v
chaos-assisted tunneling. Section III presents a simple m
for the description of the fluctuations present in the dec
catalyzed by chaos-assisted tunneling. We present there
distribution of resonance widths and consider also the dis
bution of energy shifts of the single, initially localized sta
due to the coupling to other ‘‘delocalized’’ states and, v
these states, to the continuum. This theory is confronted w
the numerical data obtained for the hydrogen atom in
field of microwave radiation of either circular or linear po
larization in Sec. IV. Finally, we present conclusions in S
V while the Appendix contains the details of the derivati
of formulas presented in Sec. III.
1458 © 1998 The American Physical Society
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57 1459IONIZATION VIA CHAOS ASSISTED TUNNELING
II. NONDISPERSIVE ELECTRONIC WAVE PACKETS
AND THEIR IONIZATION

In order to obtain the simplest study of quantum transp
through a chaotic sea, one should use an initial state a
calized as possible in phase space as, for example, a m
mum wave packet localized on a classical stable equilibr
point. Unfortunately, in atomic systems, no stable equil
rium point of the electron outside the nucleus exists.

A simple alternative is to use a nonlinear resonance
tween the internal motion of the electron and an exter
driving force. Recently, interesting objects have been p
posed in the studies of hydrogen atoms illuminated by
crowave radiation of either linear@17# or circular@18# polar-
ization: the so-called nondispersive wave packets. T
corresponding classical dynamics picture corresponds to
stable resonance island embedded in a chaotic sea. Fo
motion contained within the principal 1:1 resonance betw
the Kepler frequency of the unperturbed Rydberg elect
and the frequency of the driving field, the frequency of t
electronic motion is locked on the external microwave f
quency. Semiclassically, a wave packet localized on suc
regular island will be confined to it modulo the exponentia
decaying tails of the wave function that may extend into
chaotic region. In a quantum treatment, one finds wave pa
ets that are really single eigenstates of the atom dresse
the microwave field, i.e., single eigenstates of the co
sponding Floquet@19# Hamiltonian@17,20#. They are local-
ized in all spatial dimensions and propagate along the c
sical trajectory in the same way a classical particle wou
For a generic case~e.g., linear polarization microwaves, o
more generally, any time-periodically perturbed system@4#!,
it undergoes periodic deformations that faithfully follow th
change of shape of the resonance island over one pe
repeating the same shape every period. Only in the cas
circular microwave polarization, the shape of the wa
packet eigenstate does not change. This is due to the fac
the time dependence may be removed from the Hamilton
of the problem by a transformation to the frame rotating w
the field @21–23#.

As mentioned above, a finite\ value leads to quantum
mechanical tunneling from the island to the chaotic sea
rounding it. Then the electron gains energy from the driv
field and eventually becomes ionized by a process classic
known as chaotic diffusive ionization. Since many differe
paths link the initial wave packet with the continuum,
ionization time~or its reciprocal, the ionization rate or res
nance width! fluctuates strongly with the parameters of t
problem, the microwave frequencyv or its amplitudeF
@24#. Therefore, these wave packets are ideally suited fo
quantitative study of the ionization promoted by chao
assisted tunneling.

A. Circularly polarized microwave

Let us consider first the conceptually simpler case of
drogen atoms illuminated by a circularly polarized micr
wave ~CPM! @18,20,24#. The problem is fully three dimen
sional; however, as it has been shown elsewhere@20,24#, one
can consider the quantum dynamics in the space restricte
the polarization plane of the microwave field. While this e
cludes possible excitations in the direction perpendicula
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the polarization plane, the dynamics of the wave packets
their properties are qualitatively not affected by the reduc
dimensionality@20,24#. In the following, we shall presen
results obtained within such a reduced two-dimensio
model.

The time dependence of the Hamiltonian describing
CPM ionization of H atoms is explicitly removed by tran
forming to the coordinate frame that corotates with the m
crowave field@21,22#, where it reads~in atomic units!

H5
p2

2
2

1

r
1Fx2vl z , ~1!

with l z the angular-momentum operator.
At the center of the principal resonance island betwe

the Kepler and the microwave frequency, a periodic or
exists whose period exactly matches the period of the mic
wave. In the laboratory frame, this is a circular orbit wi
radiusx such that

1

v2x2
1

F

v2
5x. ~2!

We introduce the effective principal quantum numbern0 ~not
necessarily an integer! corresponding to this main resonanc

n05v21/3. ~3!

Due to the classical scaling of the Coulomb problem@25#,
between the two parametersv andF only one is necessary
to tune the dynamics classically. Thus we define quanti
~position and microwave electric field! scaled with respect to
n0 :

x05xn0
225xv2/3,

~4!

F05Fn0
45Fv24/3.

F0 represents the ratio of the external microwave field to
Coulomb field of the nucleus on the unpertubed reson
circular orbit. The classical dynamics depends only on t
parameter. The scaled radiusx0 of the resonant circular orbi
is the solution of the scaled equation

1

x0
2

1F05x0 . ~5!

In the corotating frame, the resonant orbit corresponds
an equilibrium point. This point is stable if the dimensionle
stability parameter

q5
1

v2x3
5

1

x0
3

~6!

is chosen in the interval 8/9,q,1 @18#. Then the existence
of a wave packet localized in the vicinity of the fixed point
ensured in the semiclassical limit. It appears in the rotat
frame as a stationary eigenstate of the Hamiltonian~1! local-
ized around the equilibrium point and in the laboratory fram
as a localized wave packet following a circular trajecto
without spreading.
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1460 57ZAKRZEWSKI, DELANDE, AND BUCHLEITNER
The energies of the wave-packet eigenstates in the ro
ing frame are given~in a harmonic approximation around th
stable fixed point! by @20#

E05
124q

2q2/3
v2/31~N11 1

2 !v12~N21 1
2 !v2 , ~7!

with

v65A22q6Aq~9q28!

2
v ~8!

the normal mode frequencies of the locally harmonic Ham
tonian that confines the wave packet andN6 the number of
quanta in these modes. In the following we shall consider
ionization of the ‘‘ground-state’’ wave packet correspondi
to N15N250. Such a wave packet can be expanded o
the usual atomic eigenstates. It is a coherent superpositio
mainly circular states@20#. The frequencyv is close to the
resonance between atomic circular states with princ
quantum numbersn→n61 with n.n0 . Thus these state
are strongly coupled by the microwave field. It can be sho
that, for such a frequency, the overlap of the wave pac
state with circular states is, for a sufficiently highn0 , Gauss-
ian distributed with a maximum atn0 and the width of the
order ofAn0.

To find the wave packets numerically, we diagonalize
time-independent Hamiltonian in the rotating frame~1! in a
Sturmian basis@23#. The so-called complex rotation metho
@26# allows us to take exactly into account the coupling
the continuum. We refer the reader to Ref.@23# for a descrip-
tion of the technical details. Let us mention here only tha
diagonalization yields complex energiesEi2 iG i /2, where
the real partsEi are the positions of the resonances, while
G i correspond to their widths, i.e., their ionization rates.
this approach, spontaneous emission from the wave-pa
eigenstates to lower-lying states is neglected. This is a
sonable approximation as they are composed of mainly
cular states that have very long spontaneous lifetimes, t
cally of the order of several 106 periods. In all calculations
discussed hereafter, the decay of wave-packet eigensta
dominated by field-induced ionization~via chaos-assisted
tunneling! andnot by spontaneous emission@27,28#.

The present results are obtained from the diagonaliza
of matrices of size up to 200 000. We use the Lanczos a
rithm @29# to extract few eigenvalues and the correspond
eigenvectors in the vicinity of the energy predicted by t
semiclassical expression~7!. The wave-packet eigenstate
then identified by its large overlap with the circular sta
with principal quantum number close ton05v21/3 and by its
large dipole moment. Typically, due to the accuracy of
semiclassical prediction, it is enough to extract a few eig
values of the matrix. For our present purpose, it is thedevia-
tion of the exact resonance position from the semiclass
prediction and theionization ratethat are of great interest fo
us.

For our statistical analysis, it is reasonable to collect
data for afixed classical dynamics, i.e., atfixed F0 value
varying simultaneouslyv andF around some mean value
On the other hand, quantum mechanics doesnot preserve the
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classical scaling: The finite\ value introduces another sca
into the problem, say, the energy of the state or the num
of photons necessary for the ionization. We shall see that
has important consequences for the characteristics of the
ization process: The statistical properties of the widths
pend onn0 .

We shall present the numerical data for both circular a
linear polarization of the driving field simultaneously. Thu
before presenting the data, we review the wave-packet p
erties in a linearly polarized microwave~LPM! @17#.

B. Linearly polarized microwave

If the atom is irradiated by an electromagnetic field
linear polarization defining thez axis, the angular-
momentum projectionm on the field axis is a good quantum
number, due to the rotational symmetry of the Hamiltonia

H5
p2

2
2

1

r
1Fz cos~vt !. ~9!

One is therefore left with two spatial degrees of freedom a
the explicit, time periodic dependence of the Hamiltoni
that cannot be eliminated. However, the temporal periocic
of the problem~for constant driving field amplitudeF) al-
lows for the application of the Floquet theorem and the id
tification of the eigenfunctionsuc i& of the atomin the field as
solutions of the stationary Floquet equation@19#

~H2 i ] t!uc i&5Ei uc i&, ~10!

where spatial coordinates and time are treated now on
equal footing. The Floquet theorem guarantees that
eigenfunctionsuc i& are periodic with the periodT52p/v of
the driving field and form a complete basis of the proble
The Floquet states with quasienergiesEi are nothing but the
‘‘dressed states’’ of the atom in the field@30#.

Again, when Coulomb attraction and driving field amp
tude become comparable, the classical dynamics of the
dberg electron turns chaotic and phase space is divided
regions of regular and irregular motion. At sufficiently larg
field amplitudes, only the principal resonance between
driving frequency and the Kepler motion is left as an~ellip-
tic! island of regular motion in the chaotic sea@17#. Unlike
the circularly polarized microwave~CPM! case, the stable
periodic orbit at the center of the elliptic island is not cha
acterized by a set of simple analytical expressions. Howe
the local oscillatory motion can be plugged into the form
a Mathieu equation@31#, the numerical solution of which
provides good estimates of the energy of the quantu
mechanical ground state and of the first excited states of
local Hamiltonian@4,32#. The oscillator ground state is th
wave-packet eigenstate of the atom in the field and follo
the classical, periodic evolution of the principal resonan
island@17,33#. Depending on the value of the classical ang
lar momentum and its projection on the symmetry axis,
wave packet may probe the Coulomb singularity and con
quently displays some transient dispersion that mimics
acceleration of the classical particle at the aphelion@17#.

Since, in the LPM case, the numerical detection of
wave packet is less straightforward than for CPMs, we
strict ourselves to the investigation of the hydrogen at
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57 1461IONIZATION VIA CHAOS ASSISTED TUNNELING
confined to one spatial dimension, along the field polari
tion axis. As the driving field amplitude is increased, it is th
direction along which chaos is born in the full dynamics
the three-dimensional atom@17,34,35#, and therefore this ap
proximation will be sufficient for our present purposes.

The LPM case has the same scaling property as the C
case: The classical dynamics depends only on the scaled
F05Fv24/3. Numerically, the wave packets are identifie
by their large ~compared to other nearby Floquet state!
overlap with the stateun0& @36#, which is resonantly coupled
to its nearest neighborun011& by the driving frequency.
Similarly to the CPM case, the quasienergiesEi and reso-
nance widthsG i of the wave packets are used for the sta
tical analysis. All data samples are characterized by a fi
value of the parameterF0 , hence they correspond to th
same structure of classical phase space. For a given valu
F0 , v ~and, accordingly,F) has been scanned to give 100
eigenvalues perF0 value.

C. Numerical results

The typical behavior of the wave packet ionization wid
versus the microwave frequency has already been prese
in @24# for a fixed microwave amplitude. It displays ver
strong fluctuations over several orders of magnitude
small changes of the frequency~typically of the order of 1
part in 1000!. These fluctuations, although perfectly dete
ministic, look completely random and are strongly remin
cent of the universal conductance fluctuations observe
mesoscopic systems@37#. Indeed, the ionization width mea
sures the rate at which an electron initially localized close
the stable resonant trajectory ionizes, i.e., escapes to infi
In other words, the ionization width directly measures t
conductance of the atomic system from the initial point
infinity. In the quantum language, the ionization width is d
to the coupling~via tunnel effect! between the localized
wave packet and states lying in the chaotic sea surroun
it. While the energy~or quasienergy in the LPM case! of the
wave packet is a smooth function of the parametersF andv,
@see Eq.~7!#, the energies of the chaotic states display
complicated behavior characterized by level repulsion
strong avoided crossings. By chance, it may happen that
specific values of the parameters, there is a quasidegene
between the wave-packet eigenstate and a chaotic s
There the two states are more efficiently coupled by tunn
ing and the ionization width of the wave-packet eigenst
increases. This is the very origin of the observed fluctuatio
Simultaneously, the repulsion between the two states sh
slightly modify the energy~real part of the complex eigen
value! of the wave-packet state. A simple way of measur
this effect is to compute also the shift of the real part of
energy level with respect to its semiclassical position~which
does not exhibit the repulsion from a near-degenerate st!.

As mentioned above, we study the fluctuations for a fix
value of the classically scaling parameterF0 versus
n05v21/3. Exemplary ionization width andlevel shiftfluc-
tuations are presented in Fig. 1 on a logarithmic scale for
CPM case. Note that both quantities fluctuate over sev
orders of magnitude and that the widths are more sensitiv
changes ofn0 . Since the shifts can take both positive a
negative values, the absolute value of shifts is plotted.
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Importantly we must mention that the shifts plotted in Fi
1 and used later for the statistical analysis are not obtai
directly from the difference between the resonance ene
and the semiclassical prediction~7! as anticipated before
These differences show a bias: The average shift is nonz
It indicates that although Eq.~7! well predicts the wave-
packet energy~to within a fraction of the mean level spac
ing!, the remaining difference is not solely due to the flu
tuations. There is a slowly varying part in it that mo
probably originates from the unharmonic corrections. T
latter could be estimated; however, since in the LPM case
do not have any good semiclassical prediction, we find
fluctuating part of the shift in both cases by subtracting fro
the exact quantum energies the smooth background. The
ter is obtained by a low-order polynomial fit of the wave
packet eigenenergies as a function of the parametern0 .

To describe the fluctuationsquantitatively, which is the
main aim of this study, we calculate the statistical distrib
tions of the ionization widthsP(w) and of the energy shifts
P(s). Typical distributions are displayed as histograms on
double-logarithmic scale in Fig. 2. The data are those of F
1. The use of logarithmic scales is useful to show quant
tively the fluctuations over several orders of magnitud
From this figure, we immediately obtain the following qual
tative conclusions.

FIG. 1. Typical fluctuations of the width~ionization rate! and
the energy shift~with respect to its unperturbed position! of the
nonspreading wave packet of a hydrogen atom exposed to a c
larly polarized microwave field. The wave packet is a stationa
state of the atom dressed by the microwave field and at the s
time a wave packet orbiting around the nucleus at exactly the
crowave frequency, without spreading. In the language of nonlin
physics, the wave packet is at the center of the primary resona
island between the microwave frequency and the internal Kep
frequency of the electron. It is coupled to the surrounding chao
states by tunneling and therefore has an ionization rate induced
chaos-assisted tunneling process that shows huge fluctuations
a parameter is varied. The data presented are obtained for s
variations of the effective principal quantum numbern0 around 40,
a scaled microwave electric fieldF05Fn0

450.0426, and a micro-
wave frequencyv51/n0

3. To present both plots on a logarithmi
scale~more convenient to show the fluctuations over several ord
of magnitude! we plot the absolute value of the shift rather than t
shift itself.
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1462 57ZAKRZEWSKI, DELANDE, AND BUCHLEITNER
~i! The distribution of energy shiftsP(s) tends to a con-
stant ass→0.

~ii ! Above some critical value, the distribution drops a
decreases roughly algebraically withs. The slope is close to
22, indicating aP(s)[1/s2 behavior.

~iii ! Finally, P(s) falls off abruptly above some value.
~iv! The distribution of ionization widthsP(w) behaves

algebraically withw at small width, with a slope close t
21/2. Hence the small widths are the most probable one

~v! Above some critical value, the distribution drop
faster, roughly with a 1/w3/2 behavior.

~vi! Finally, similarly to the shift distribution, there is
final sharp cutoff.

These conclusions are similar to the ones obtained
slightly different physical situation, when two symmetr
regular islands are coupled to a single chaotic sea~see Ref.
@14# for a complete discussion of this physical situatio!.
There, states lying on the regular islands appear in doub
with even or odd parities with respect to the discrete sy
metry exchanging the two regular islands. The splitting
the doublet is a direct measure of the chaos-assisted pro
where the particle tunnels from one regular island, then
fuses in the chaotic sea, and finally tunnels to the other re
lar island. This process is very similar to the one studied
the present paper where the particle tunnels and then diff
towards infinity. The splitting distribution observed
@14,15# is indeed very similar to our shift distribution a
explained below. In the following section, we propose
simple model, mainly based on physical ideas similar

FIG. 2. Distributions of the~a! energy shifts and~b! widths of
the nonspreading wave packet of a hydrogen atom in a circul
polarized microwave field. The data are those of Fig. 1. They
plotted on a double-logarithmic scale, which clearly shows the la
fluctuations. Both the shift~actually the absolute value of the shif!
and the width have been rescaled to their typical values, as
plained in the text.
.
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those used in@14#, that allows us to understand the properti
of our shift and width distributions.

III. STATISTICAL MODEL

We shall consider a simple statistical model amenable
an analytical treatment. Despite its simplicity, we shall s
‘that it is capable of describing quantitatively the fluctuatio
of resonance widths and shifts observed in the numer
analysis of the microwave ionization of hydrogen atoms.

The model system is directly based on the understand
we have of the origin of the fluctuations and follows the id
already used in@14#. The idea is to consider the wave-pack
eigenstate as coupled randomly to a set of chaotic states~de-
scribed by random matrix theory!, which are themselves ran
domly coupled to the atomic continuum. More precisely, o
model consists of a single stateu0& ~representing a state lo
calized on the elliptic island! coupled~weakly! to the space
of N ‘‘chaotic,’’ irregular levels, which are close tou0& in
energy. The latter states are considered to be, strictly sp
ing, resonances rather than bound states due to the me
nism responsible for decay~e.g., the ionization of an atom!.
While we consider a single localized state in the model, th
may be several other states localized on the same isl
They will have typically much different energies and the
mutual coupling via the chaotic states is negligible.

The Hamiltonian matrix may be represented as
(N11)3(N11) matrix:

H5S 0 s^Vu

suV& H02 iWD , ~11!

where we have assumed that the energy of the localized
sets the zero of the energy scale. The first vector in the b
represents the localized state, the followingN ones the cha-
otic states. In the chaotic subspace, the statistical prope
of the Hamiltonian are well represented by anN3N random
matrix H0 . We shall deal with problems with a preserve
~generalized! time-reversal invariance:H0 should belong,
therefore, to the Gaussian orthogonal ensemble~GOE! of
real symmetric matrices@2,38#. The matrix elements ofH0
are independent random Gaussian variables

P„~H0! i j …5

expS 2
~H0! i j

2

2s i j
2 D

A2ps i j
2

, ~12!

with the variance satisfying

s i j
2 5~11d i j !

p2D2

N
. ~13!

HereD is the mean level spacing between consecutive c
otic states close to energy 0.

Following a commonly accepted approach@39#, the cou-
pling of the chaotic state to the continuum is introduced
the decay matrix

W5
g

2
uW&^Wu, ~14!

ly
e
e

x-



-

te
Th
th
ig
om
el
n
i

e
e
in
e

u

th

to
d
os

ev
-

o

et

ta

c
uc
n
e
in

ed
e
ry
e
h

ere
an

ck-
ape

n
to

l-
ha-
our
ro-

of
tate
er-
ac-
e of
-
e
n-

of
e

he

to
w

or-

ou-
s,

ned

is-

-

57 1463IONIZATION VIA CHAOS ASSISTED TUNNELING
where theN component real vectoruW& describes the cou
pling of the chaotic states to the continuum. As in Ref.@39#,
we take this vector to be composed of Gaussian distribu
random numbers with vanishing mean and unit variance.
real coefficientg measures the strength of the decay to
continuum. Such a form implies that there is only one s
nificant decay channel for chaotic states. This is far fr
obvious and, as discussed below, probably true only at r
tively low field strength. When there are several open io
ization channels, a convenient form of the decay matrix
@39#

W5 (
k51

M
gk

2
uW[k]&^W[k] u, ~15!

whereM denotes the number of open channels~degeneracy
of the continuum! and theN component real vectorsuW[k]&
describe the coupling of the chaotic states to chann
k51, . . . ,M . Again, we take these vectors to be compos
of Gaussian distributed random numbers with vanish
mean and unit variance. Thegk real coefficients measure th
strength of the decay to continuumk.

In a similar way, the~real! N-component vectoruV& in
Eq. ~11! describes the coupling of the localized stateu0& to
the chaotic states. Each component ofuV& is taken as a
Gaussian distributed random number of zero mean and
variance. The coefficients in Eq. ~11! is a measure of the
strength of the coupling between the localized state and
chaotic subspace.

If the coupling to the continuum is neglected (g50), the
model describes a single bound state randomly coupledN
chaotic states. This is exactly the model succesfully use
@14# to describe the splitting of doublets induced by cha
assisted tunneling.

The model has several free parameters: the mean l
spacing between chaotic statesD, the strength of the cou
pling with the ionization channelg, and the strength of the
coupling to the localized states. There is a trivial scaling
law of the HamiltonianH @Eq. ~11!#, which implies that,
except for a global multiplicative factor, there are only tw
relevant dimensionless parameterss/D and g/D in the
model. For several open channels, the relevant param
ares/D andgk /D, k51, . . . ,M .

Due to the interaction with chaotic resonances, the s
u0& is not an eigenstate of the full HamiltonianH @Eq. ~11!#.
However, in most cases, the coupling to chaotic resonan
is weak and the true eigenstate does not differ very m
from u0&: This is the perturbative regime that we shall co
sider in the rest of this paper. This regime is obtained wh
the coupling is much smaller than the mean level spac
between chaotic states, i.e.,

s!D. ~16!

We will see below that this condition is always satisfi
for the real physical system~hydrogen atom plus microwav
field! for the microwave fields studied in this paper. At ve
high field, when the nondispersive wave packet is destroy
this pertubative approximation should break down. T
physical interpretation is clear: If Eq.~16! is not satisfied, the
localized state is spread over several eigenstates ofH and
d
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completely loses its identity. It has been shown elsewh
@40# that, in the perturbative regime, the localized state c
be interpreted as a soliton weakly interacting with the ba
ground of chaotic states, but essentially keeping its sh
when a parameter~for example, the microwave field
strength! is varied.

In the following, we will also assume that the ionizatio
rates ~widths! of the chaotic states are small compared
their mean level spacing, i.e., that the decay matrixW @Eq.
~15!# can be considered as a pertubation. This implies

g!D. ~17!

Such a condition is notstrictly necessary, but it makes ca
culations simpler. Physically, it means that the various c
otic resonances are isolated. This is a typical situation in
system: the ionization of an atom in the presence of mic
wave driving for not too strong microwave amplitudes.

With the above assumptions, motivated by the physics
the process studied, the shift and width of the localized s
may be obtained using the lowest nonvanishing order of p
turbation theory. Such an approach is justified unless an
cidental degeneracy between the localized state and on
the eigenstates of the matrixH0 occurs. Neglecting such de
generacies~which only affect the tail of the distribution; se
Sec. IV A below! and performing an average over the ra
dom matrix ensemble defined by Eq.~11! makes it possible
to extract the analytic expressions both for the distribution
shifts and for the distribution of widths. The details of th
derivation are given in the Appendix. We give here only t
important results.

The shift distribution is obtained along a similar way
Leyvraz and Ullmo@15# and takes the form of a Cauchy la

P~s!5
1

p

s0

s0
21s2

, ~18!

with

s05
ps2

D
. ~19!

Importantly, this result is independent of the degree of c
relation among the eigenvalues of theH0 matrix: The same
result is obtained for an uncorrelated spectrum~Poisson-like
distributed eigenvalues, physically corresponding to c
pling of the localized state with a set of ‘‘regular’’ state
instead of chaotic ones as in the model described above!, a
GOE, or a picket-fence~harmonic-ocsillator! spectrum@15#.
This Cauchy distribution is the same as the one obtai
@14,15# in the absence of ionization.

The situation is a bit more complicated for the width d
tribution. For Poissonian distributed eigenvalues ofH0 ~un-
correlated spectrum!, a similar Cauchy distribution is ob
tained for thesquare rootof the width, corresponding to the
following distribution of widths~see the Appendix!:

PPoisson~w!5
1

p

Aw0

Aw~w1w0!
, ~20!

with
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w05
4s2g

D2
. ~21!

For a matrixH0 belonging to the GOE, the distribution i
slightly more complicated~see the Appendix!:

PGOE~w!5
2

p2

w08
3/2 ln~w1A11w/w08!1Aww08~w1w08!

w~w1w08!3/2
,

~22!

with

w085
p2s2g

D2
5

p2

4
w0 . ~23!

Although it is distinct from Eq.~20!, it has in fact quite a
similar shape~see Fig. 4!. In particular, if PGOE is rescaled
by a global multiplicative factor of about 20%, it is almo
indistinguishable fromPPoisson. Many statistics are necessa
to determine which of the two distributions is the correct o
for a given data set~see also Sec. IV!.

We can also obtain the distribution of widths for the ch
otic states in the perturbative regime. This is the well-kno
‘‘nonoverlaping resonances’’ regime@41–43# where the
widths are distributed according to a Porter-Thomas distri
tion

PPT~w!5
1

Aww̄
exp~2w/2w̄!, ~24!

where w̄ denotes the average width. For smallw, PPT di-
verges asw21/2, while for largew it decays exponentially.

IV. ANALYSIS OF THE DATA

A. Quantitative analysis of the fluctuations
with the statistical model

The exact expressions~18–22!, obtained in the perturba
tive regime reproduce qualitatively most of the statistical d
tributions numerically observed for the shift and width of t
nondispersive wave packet of the hydrogen atom in a mic
wave field; see Fig. 2. For the shift distributionP(s), the
distribution is constant near 0 and decays like 1/s2 at larges.
The only difference is the absence of the sharp cutoff in
perturbative expression. This can be easily understood:
large energy shifts correspond to quasidegeneracies bet
the localized state and one specific chaotic state, i.e., to
immediate vicinity of an avoided crossing. There the sim
pertubative scheme breaks down and the actual shift rem
finite as the perturbative expression diverges as the inv
of the unperturbed spacing between the chaotic and local
states. Hence the actual distribution has to fall faster than
perturbative one at large shifts, as numerically observed

The width~ionization rate! distribution behaves similarly
Both the initial 1/w1/2 regime and the following 1/w3/2 re-
gime observed for the wave packet are well reproduced
the simple statistical model. Again, the difference is the
sence of the cutoff for very large widths. The reason is id
e
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tical, namely, the breakdown of the perturbative approxim
tion.

Nevertheless, we can go beyond the perturbative sche
using the statistical model described in Sec. III, but calcu
ing numerically the shift and width distribution. This ha
been done by numerical diagonalization of the comp
Hamiltonian, i.e., of random matrices corresponding to E
~11!, generated according to the rules given above. A dia
nalization of a matrix of sizeN580 yields a single shift and
width for chosen values ofs/D and g/D. Using different
random matrix realizations we accumulate up to 50 000 d
for comparison. We have verified that the distributions o
tained do not depend on the matrix sizeN.

In Fig. 3 we show the numerical results for the shift d
tribution obtained for the hydrogen atom in a circularly p
larized microwave field with the perturbative analytical e
pression for our random matrix model~pure Cauchy
distribution! @Eq. ~18!# and with the full nonperturbative re
sult using our statistical model, both on a linear scale, w
suited for small and moderate shifts, and on a double lo
rithmic scale, well suited for the tail of the distribution a
large shifts. As expected, the perturbative analytical exp
sion reproduces the numerically observed distribution,
cept for the exponentially small tail at a large shift. The fu
nonperturbative distribution is found to be in excellent agr
ment with the numerical data for the real system, the hyd

FIG. 3. Comparison between the distributions of the ene
shifts of the nonspreading wave packet of a hydrogen atom
circularly polarized microwave~large bins histogram! with the dis-
tribution obtained for our random matrix model~small bins histo-
gram!. The data are those of Fig. 1 with the same rescaling.~a!
Linear scale; the agreement is excellent. The two histograms fo
exactly a Cauchy distribution~18!. ~b! Double-logarithmic scale,
which emphasizes the long tail of the distributions. Again, t
agreement is remarkable. The dashed line is the pure Cauchy
tribution predicted in the perturbative regime and differs from t
numerical result at large shifts.
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gen atom in a circularly polarized microwave field, whic
proves that our simple statistical model actually catches
physics of the chaos-assisted tunneling phenomenon. A s
lar conclusion has been reached@14# for doublet splittings
induced by chaos-assisted tunneling.

In Fig. 4 a similar analysis is done for the distribution
widths, on both a linear and a double-logarithmic scale.
the linear scale, instead of the width distribution~22! itself,
which diverges at zero~see the Appendix!, we plotted the
distribution for the square root of the width, which tends to
constant value at zero. As can be seen, the agreeme
again excellent over the full range, the perturbative expr
sion being inaccurate in the tail only, as expected. In addi
to the perturbative analytical expression~22! we have also
drawn the distribution expected when the states in the c
otic sea have eigenergies described by a Poisson distribu
rather than a GOE one~20!. Both distributions are similar fa
from the origin and differ by about 20% atw50. At first
glance, it seems that the Poisson curve agrees slightly b
than the GOE curve, which is somewhat surprising and
understood as chaotic motion surrounding the stable is
suggests the choice of the GOE. However, the deviation
the border of statistical significance. In the doub
logarithmic plot, we have also added the Porter-Thomas
tribution ~24!, which reproduces correctly the tail at larg
widths.

FIG. 4. Same as Fig. 3, but for the width.~a! Linear scale for the
distribution of the square root of the width. The dashed line is
analytical result~Cauchy distribution!, Eq. ~20!, for a Poisson spec
trum and the continuous solid line the analytical result~22! for a
GOE spectrum. The agreement with the Poisson prediction
slightly better, although all distributions are very similar.~b!
Double-logarithmic scale showing the agreement of the random
trix model with the real system, even for the tail of the distributio
The dashed line is the analytical perturbative expression~20!, which
differs from the numerical result in the tail. The dotted line is t
Porter-Thomas distribution~24! for a system without chaos-assiste
tunneling; it describes the exponentially small tail of the distrib
tion.
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It is remarkable that both the shift and the width distrib
tions are so well reproduced by the random matrix mod
This proves that our simple statistical model carries the
sential part of the physics. The data presented are the firs
far as we know, manifestation of the chaos-assisted tunne
process in a realistic, experimentally accessible systems

Even if the perturbative expression~20! incorrectly de-
scribes the nonperturbative large width tail, it is clear that
initial w21/2 decrease, similar toPPT @Eq. ~24!# is followed
by a regime ofw23/2 behavior. The length of thisw23/2

behavior provides interesting information about the syste
For strong coupling,s>D, the localized stateu0& is strongly
mixed with the chaotic state. Thus its width distributio
would be the same as that of other resonance states, i.
Porter-Thomas distribution. Hence thew23/2 part there
shrinks to zero and the power21/2 law is followed imme-
diately by the exponential tail. The relative importance of t
w23/2 part in the width distribution indicates, therefore, th
presence of the weak-coupling, perturbative regime. Co
pared to the pure chaotic state where fluctuations of
widths are already known to be large, the effect of additio
tunneling is to shift some part of the width distribution t
wards small widths while keeping the exponential cuto
that is, to increase the fluctuations. In the perturbative lim
the fluctuations become so large that the average widthdi-
verges.

The success of the statistical model allows to give a co
plete physical interpretation of the observed data.

~i! The smallest shifts and widths, observed for

s,s0 , ~25!

w,w0 , ~26!

with probabilities behaving, respectively, ass0 and w21/2,
correspond to the localized state lying far from quasideg
eracies with one of the chaotic states. Then the locali
state is weakly contaminated by the various surrouding c
otic levels. For example, its shift is the sum of the effect
level repulsion by the various chaotic states. Chaotic sta
with higher ~lower! energy push the localized state dow
~up! in energy, which globally results in a small shift with
random sign. The width results from the interference b
tween the elementary ionization amplitudes contributed
the various chaotic states. As there is only one open de
channel, the amplitudes, not the probabilities, have to
added. As they are essentially random uncorrelated variab
the interference is mainly destructive, producing sm
widths with a large probability.

~ii ! The intermediate shifts and widths, observed for

s0,s!s, ~27!

w0,w!g, ~28!

with probabilities behaving, respectively, ass22 andw23/2,
correspond to one chaotic state being much closer in en
to the localized state than to the other chaotic states,
nevertheless sufficiently far to be coupled only perturb
tively. Then the single coupling to this particular chao
state dominates both the shift and the width of the localiz
state.
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~iii ! The largest shifts and widths, observed for

s.s, ~29!

w.g, ~30!

correspond to the quasidegeneracy between the loca
state and one chaotic state, with strong nonperturbative m
ing between the two. This is where the exponentially d
creasing tails are observed.

In the latter two cases, as one chaotic state is domin
approximate expressions for the distributions can be obta
by a simple two-level model. Although the expression of t
shift and the width are then easy to obtain~diagonalization of
a 232 complex matrix!, we have not been able to perfor
analytically the averaging over the ensemble of random
trices.

B. Extraction of the relevant physical parameters
from the statistical data

The simplest possible measures of the fluctuations o
quantity are typically its average value and the variance.
spection of the perturbative distributions for both the sh
@Eq. ~18!# and the widths@Eq. ~20!# suggests, however, som
caution. Indeed, the average value of the width is not defi
~the corresponding integral diverges! and the same is true fo
the variance of the shift~the average value is zero due to t
symmetry of the distribution!. This is because of the exis
tence of long algebraic tails 1/s2 and 1/w3/2 in the distribu-
tions. The variance of the shift and the average value of
width are infinite because of the diverging contributions
these tails. This is an example of unusual random proce
such as Le´vy flights @44#, where rare events play the dom
nant role. Ultimately, it is because, in perturbation theo
the contamination of a state by its neighbors is proportio
to the ratio of the coupling matrix element to the ener
difference and consequently decreases slowly: Even a
distant level can have a large effect.

For the full nonperturbative distributions, the exponent
cutoff at large values destroys the divergence of the vari
integrals, and average values and variances, as well as h
moments of the distributions, are well defined and could
calculated. Their precise values, however, depend cruc
on the position of the cutoffs. Hence distributions identic
for small widths~shifts! and only differing at large widths
~shifts! may have completely different average values a
variances. Calculating such quantities requires a very a
rate knowledge of the tails of the distributions. The avera
values and the variances are thus fragile and difficult to
culate on a real system such as the hydrogen atom in a
crowave field; they do not provide us with the most intere
ing physical information.

Rather than the average values, we prefer to define typ
values. The typical widthw̃ lies at the middle of the distri-
bution, such that half of the widths are larger and half
them smaller, i.e.,

E
0

w̃
P~w!dw5

1

2
. ~31!
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With such a definition, the typical width is robust, on
weakly sensitive to the tail of the distribution.

A similar definition holds for the typical shift, slightly
modified to take into account thats can be either positive o
negative:

E
0

s̃
P~ usu!dusu5

1

2
. ~32!

For the perturbative distributions in the statistical rando
matrix model, the typical widths and shifts can be calcula
from Eqs.~18!, ~20!, and~22!:

s̃5
ps2

D
,

w̃5
4s2g

D2
for a Poisson spectrum, ~33!

w̃5
5.48s2g

D2
for a GOE spectrum.

For the full non-perturbative random model distributions,
long as the basic hypotheses of small coupling@Eqs.~16! and
~17!# are true, we carefully checked that the typical widt
and shifts are not significantly~within 10 or 20 %! different
from the previous analytic expressions.

For a real physical system such as the wave packets in
hydrogen atom exposed to a microwave field, we can r
ably extract from the statistical data the typical width a
shift. We have also compared the numerically obtained d
tributions with nonperturbative distributions of our statistic
model and performed best fits of the former by the latt
Again, we checked that the typical width and shift for th
best fit do not differ by more than 10 or 20 % from the dire
measures. This implies that the typical shift and width can
safely used to extract from the statistical distributions
relevant physical parameterss ~coupling between the local
ized state and the chaotic states! andg ~ionization widths of
the chaotic states!. Slightly different values are obtained
the Poisson or GOE expressions are used. In the follow
we have used the GOE expression.

In fact, only s2/D and the dimensionless parameterg/D
~from the ratiow̃/ s̃) can be easily extracted. Obtaining th
other dimensionless parameters/D or s and g themselves
requires knowledge of the mean spacingD between chaotic
resonances. Surprisingly, this is not straightforward. To
derstand the problem, consider the diagonalization of
Floquet Hamiltonian for the LPM case. The number of sta
present in a single Floquet zone depends on the numbe
photon blocks included in the diagonalization. When it
increased, new states appear in the vicinity of the wa
packet state corresponding to either low-lying atomic sta
~with very different energy but shifted upward by an integ
times the photon frequency! or highly excited states or reso
nances~shifted downward!. These states should not contrib
ute to the determination ofD since they have a vanishin
overlap with atomic states building the wave packet. Hen
the mean level spacingD between chaotic states is a som
what ambiguous quantity. However, as will be seen at
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57 1467IONIZATION VIA CHAOS ASSISTED TUNNELING
beginning of Sec. IV C, all our results are obtained either in
the perturbative regimes,g!D or close to it, and the mean
spacingD is just a scaling parameter. A rough estimate ofD
is obtained assuming that only states with similar principa
quantum number, let us say differing by less than a factor 2
are efficiently coupled. Experimental results on hydrogen a
oms in a linearly polarized microwave field@45# suggest that
the physics of ionization is entirely dominated by states with
principal quantum number less than 2n0 ~when the experi-
mental cutoff is changed from infinity to 2n0 , no important
change is observed!. At low microwave field, the number of
efficiently coupled states is smaller, but this is not the regim
of chaotic diffusion we are interested in. Chaotic motion re
quires overlap between classical resonance islands, i.e., e
cient coupling between states of largely different principa
quantum numbers. This gives the following approximate
mean level spacing, used later in this paper:

D'
1

n0
4

. ~34!

C. Tunneling and chaotic ionization rates

Figure 5 shows the typical width and shift for the non-
spreading wave packet of the hydrogen atom in a circularl
polarized microwave field at frequencyv51/(40)3, as a

FIG. 5. Typical shift ~with respect to the unperturbed energy
level! and width~ionization rate! of the nonspreading wave packet
of the hydrogen atom in a circularly polarized microwave. Each
point in the plot is extracted from the analysis of a distribution
similar to the one in Fig. 2 built from several hundred independen
diagonalizations of the Hamiltonian~1! at neighboring values of the
field strength and frequency, aroundn0540. The statistical analysis
of each distribution is done as in Figs. 3 and 4. The typical values o
the energy shift~circles! and width~squares! globally increase with
the microwave field strength, but with bumps that are obviously
correlated. The long-dashed line represents the mean energy le
spacing D between chaotic levels~all quantities are plotted in
atomic units!. The typical width is smaller than the typical shift,
itself smaller thanD, which proves that the data are obtained in the
perturbative regime where chaos-assisted tunneling is only a sm
perturbation. For details, see the text.
l
,

t-

e
-
ffi-
l

y

function of the scaled electric fieldF05F(40)4. Each point
in this curve results from the numerical diagonalization
several hundred matrices, each of typical size several ten
thousands, for neighboring values of the microwave fi
strength and frequency. The statistical model descri
above makes it possible to separate the intrinsic huge fl
tuations of the ionization rate and extract values of the v
ous couplings. This is very clear in Fig. 5, where both t
typical width and the typical shift are relatively smooth fun
tions of the field strength, with short-range fluctuatio
smaller than a factor 2, whereas the raw shift and wi
display fluctuations over at least three orders of magnitu
compare Fig. 5 with Fig. 1.

In Fig. 5 one can easily check that the typical width
always smaller than the typical shift by at least one order
magnitude. As the ratio of the two isg/D @see Eq.~33!#, this
implies that inequality~17! is verified. Also, the typical shift
is smaller than the mean level spacing~represented by the
dashed line!, which, using Eq.~33!, shows that inequality
~16! is also verified. Altogether, this proves that our data
effectively obtained in the perturbative regime.

The third observation in Fig. 5 is that neither the typic
width nor the typical shift is a monotonical increasing fun
tion of the microwave field strength, but displays vario
bumps. These bumps are obviously strongly correla
which indicates that they are due to variations of the tunn
ing rates rather than variations ofg. Indeed, in Fig. 6 we
plot the dimensionless parameterss/D and g/D deduced

t

f

vel

all

FIG. 6. Nonspreading wave packet of a hydrogen atom in
circularly polarized microwave. The tunneling rate to the~a! sur-
rounding chaotic seas/D and~b! chaotic ionization rateg/D of the
chaotic states is as extracted from the data in Fig. 5, using
simple statistical model based on random matrix theory. These
quantities are dimensionless~rescaled to the mean level spacin!
and smaller than 1 in the perturbative regime. The tunneling
has large oscillations when the scaled microwave field is varied
a consequence of secondary resonances occurring in the pri
island where the wave packet is localized. The chaotic ioniza
rate increases very rapidly at lowF0 , as a consequence of th
destruction of barriers slowing down the chaotic diffusion towa
ionization, and further saturates at a rather constant value w
chaotic dynamics is reached.
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1468 57ZAKRZEWSKI, DELANDE, AND BUCHLEITNER
from the typical shift and width. It confirms that the tunne
ing rate s/D is a slowly increasing function of the fiel
strength with various structures. The bumps occur precis
at values of the field strength where there is a resona
between the eigenfrequenciesv1 and v2 @Eq. ~8!# of the
motion in the vicinity of the stable fixed point supporting th
nonspreading wave packet. This has been analyzed in
@40#, where it is shown that the bump aroundF050.023
corresponds to the 1:4 resonance and the bump just b
F050.04 to the 1:3 resonance. In the vicinity of such a re
nance, the classical dynamics is strongly perturbed and s
secondary resonant tori and islands appear. The bump
Fig. 6 are just quantum manifestations of an increased tr
port rate induced by these classical resonances. Not sur
ingly, g/D, which represents the ionization rate of sta
surrounding the resonance island, is practically not affec
by these resonances~only small residual oscillations are vis
ible aroundF050.04). On the other hand, it increases ve
fast up to scaled fieldF0'0.04, where it saturates to
roughly constant value. This has a simple semiclassical
planation. BelowF0'0.04, chaos is not established arou
the principal resonance island and there still exist some re
lar tori further in phase space that strongly slow down
classical chaotic diffusion. Above 0.04, only the princip
resonance island survives and the chaotic ionization rat
quite large (g/D is of the order of 0.1! and only slowly
increases with the field strength.

Strictly similar observations can be made for the hyd
gen atom exposed to a linearly polarized microwave fie
which proves that they are not specific to one system un
study, but rather general properties of chaos-assisted tun
ing followed by chaotic diffusion. Figure 7 displays the typ
cal width and typical shift of the nonspreading wave pac

FIG. 7. Plots of the typical shift and width of the nonspreadi
wave packet, as in Fig. 5, for a hydrogen atom in a linearly po
ized microwave field, aroundn0540. Again, the typical values o
the energy shift~circles! and width~squares! globally increase with
the microwave field strength, with bumps that are obviously co
lated. The long-dashed line represents the mean energy spacD
between chaotic levels~all quantities are plotted in atomic units!.
The typical width is smaller than the typical shift, itself smaller th
D, which proves that the data are obtained in the perturbative
gime where chaos-assisted tunneling is only a small perturbati
ly
ce
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for n0540, as a function of the scaled microwave fie
F05Fn0

4 . Again, these data are obtained in the perturbat
regime@see Eqs.~16! and~17!# and display obviously corre
lated bumps. The dimensionless tunneling rates/D and cha-
otic ionization rateg/D, shown in Fig. 8, indicate that the
bumps are due to secondary resonances inside the prim
resonance island between the external microwave freque
and the internal Kepler motion. A comparison between Fi
6 and 8 shows that both the tunneling rate and chaotic
ization rate are of the same order of magnitude in linear
circular polarization, with similar changes versusF0 , up to
possibly a roughly constant multiplicative factor. This is
confirmation of the experimental observation that very sim
lar ionization threshold frequency dependences are obse
in the two cases providedF0 is appropriately rescaled@46#.
As in @46# we observe that larger values ofF0 are necessary
in LPMs to result in the behavior similar to that for CPMs

To make the study complete, we have also studied h
the typical width and the typical shift change when the pr
cipal quantum numbern0 or, equivalently, the microwave
frequencyv51/n0

3 is changed. The result is shown in Fig.
for the circular polarization, for a fixed scaled microwa
field F050.0426. In this plot, the classical dynamics of th
system is absolutely fixed, the only varying parameter be
the effective Planck constant\eff51/n0 . The striking phe-
nomenon is the fast decrease of both the typical width
typical shift with n0 . In the logarithmic scale of Fig. 9, i
appears as a straight line indicating an exponential decr
with n0 . Also, the two quantities decrease along para
lines, which, according to Eq.~33!, indicates that the tunnel
ing rate s is responsible for this decrease. In Fig. 10 w
plotted the dimensionless tunneling rates/D and chaotic
ionization rateg/D as a function ofn0 . Note thats/D is
plotted using a logarithmic scale andg/D on a linear scale.
The exponential decrease is of the form

-

-

e-
.

FIG. 8. Same as Fig. 6, but for a hydrogen atom in a linea
polarized microwave. Again, the bumps in~a! s/D are related to
the secondary resonances in the system, while~b! g/D is more or
less constant as soon as the chaotic regime is reached.
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s/D.exp~2n0S!5expS 2
S

\eff
D , ~35!

with S'0.0660.01 ~extracted from the plot!.
Such a dependence is typical for a tunneling procesS

then represents the tunneling action from the stable fi
point where the wave packet sits in the chaotic region s
rounding the resonance island. If complex orbits are useS
can be thought of as the imaginary part of the action o
complex tunneling orbit@49,50#. In our realistic system, find
ing such complex orbits is much more difficult than in t
few model systems where this analysis has been done.
have not been able to find the complex path associated
the tunneling process, but our purely quantum results m
provide a guide in this search, as they show that the im
nary action has to be of the order of 0.06 forF050.0426.

On a linear scale~see Fig. 11! the dimensionless chaoti
ionization rateg/D is a slowly increasing function ofn0 . A
simple classical analysis using the so-called Kepler m
@34#, which is known to produce relatively good predictio
for the ionization threshold of Rydberg states by a mic
wave field@23,47#, predicts a linear dependence versusn0 ,
while the numerical result seems rather a quadratic funct
This discrepancy could be due either to the approximati
done to obtain the Kepler map or to the fact that, for highn0 ,
the statistical model used to extractg/D @see Eqs.~18!, ~20!,
~22!, and~33!# is no longer valid because several ionizati
channels are open~see Sec. IV D!.

Let us note that to get 800 data points forn05100
~enough to determine the typical shift and width! requires
about 40 h of Cray J98 single processor CPU time. T
results presented are, in this sense, quite costly~the size of
diagonalized matrices exceeded 200 000 in this case!.

FIG. 9. Same as Fig. 5, but plotted for fixed classical dynam
~fixed F050.0426) as a function of the effective principal quantu
number n051/\eff . Because the primary resonance island ha
fixed structure, the bumps visible in Fig. 5 are almost absent. B
the typical shift and typical width decrease exponentially withn0 , a
signature of a tunneling process. The long-dashed curve show
mean energy spacingD between chaotic states.
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D. Limitations of the model

Although the simple statistical model well describes t
fluctuations of the width and shift of the nonspreading wa
packet for a range of scaled microwave field (F0
P@0.03,0.08# for LPMs andF0P@0.02,0.06# for CPMs, both
for n0 around 40!, the region where experiments are usua
done, additional difficulties appear for lower and higher fie
values.

For lowerF0 values, a statistically significant part of th
data show very small widths, at the limits of the numeric
precision. At the same time, plots of the wave packets si
lar to those shown in@20# suggest that the states are mo
extended, extending far from the stable island. The situa
then may not correspond to a clear-cut case of the ch
assisted tunneling process. Our LPM data indicate tha
such cases the singularity for small widths is much stron
than G21/2. Similarly, in the CPM case, we did not prese
the random matrix fit forF050.038, as a significant part o
the data is affected there by a strong classical 1:3 reson
@40#. Thus we do not face a clear case of a single localiz
state but rather two strongly coupled localized states dec
ing via a chaos-assisted tunneling process. Since such a
is quite rare, we prefer to exclude it from the analysis and
to construct the extension of the random matrix theory
could not be tested convincingly on a single case anywa

Most importantly, we could not extend the random mod
fits to higherF0 values for a very simple reason. There w
observed indications of the opening of other ionization ch
nels@see Eq.~15!#. A typical signature of such a behavior
the disappearance of the singularityG21/2 in the distribution
of the widths. To understand this, note that the typi

FIG. 10. Same as Fig. 6, but plotted for fixed classical dynam
~fixed F050.0426) as a function of the effective principal quantu
numbern051/\eff . ~a! The tunneling rates/D decreases exponen
tially with n0 ~note the logarithmic scale!, which proves that the
process involved is actually tunneling. From the rate of the ex
nential decrease we are able to extract the ‘‘tunneling actio
S50.0660.01. ~b! The chaotic ionization rateg/D smoothly and
slowly evolves withn0 ~note the linear scale!, approximately asn0

2 .
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Porter-Thomas distribution behaves, for small widths,
GM /221, with M being the number of open channels@41,43#.
In the chaos-assisted tunneling process leading to ioniza
while the full distribution differs from the Porter-Thoma
distribution, as exemplified earlier for the single-chann
case, the small width functional behavior is similar in bo
cases.

The study of the available data reveals that the openin
the second and possibly the third ionization channel app
gradually with the increasing microwave amplitudeF0 .
Thus the different possible ionization channels are not
equal importance, i.e., they are not equivalent~in the lan-
guage of the random matrix theory@39#!. To build the ran-
dom matrix model of the process one then needs to introd
additional free parameters describing the strength of the c
pling to the additional ionization channels, i.e., various v
ues for thegk in Eq. ~15!. Although such a procedure is quit
straightforward, it is clear that fitting these parameters to t
data sets~shifts and widths! provides little information and
must be ambiguous. Typical distributions of the square r
of the width obtained for large microwave amplitudes a
presented in Fig. 11 for LPM and CPM wave packets. N
the presence of the hole for small widths.

On the other hand, since in the perturbative limit the le
shifts depend only on the real coupling between the locali
state and the remaining chaotic subspace@Eqs. ~19! and
~33!#, one can expect that the shifts will be still well d

FIG. 11. ~a!–~c! Dimensionless shift distribution and~d!–~f!
distribution of the square root of the dimensionless width for
nonspreading wave packet of a hydrogen atom in a microw
field. The distributions of the square root of the width deviate fro
our simple statistical model, which predicts a Cauchy law, beca
several ionization channels are opened at high field strength o
largen0 . On the contrary, as predicted by the model, the distri
tions of shifts remain close to Cauchy distributions@solid lines in
panels~a!–~c!# and are not sensitive to the number of open ch
nels. ~a! and ~d! correspond to a circularly polarized microwav
field, n0540, F050.068; ~b! and ~e! correspond to a circularly
polarized microwave field,F050.045, butn0590, i.e., for a much
smaller average frequencyv51/n0

3, which is deeper in the semi
classical regime; and~c! and ~f! correspond to a linearly polarize
microwave field,n0540, F050.076.
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scribed by the Cauchy law~18! independently of the opening
of additional ionization channels. Indeed, it is the case
exemplified in Fig. 11 for LPM and CPM wave packets.

Similarly, the opening of additional ionization channels
expected in the semiclassical limit. The limit is realized
decreasing the microwave frequency; then the wave pack
composed of circular states of highern0. While the data
corresponding to the single-channel decay have been
tained forn0540 atF050.0426, we observed the opening
the second channel for the sameF0 starting atn0560. Fig-
ure 11~e! presents the histogram of the square root of
width for n0590 and shows the existence of at least tw
open channels. Again the corresponding shift distribution
not affected and is well described by the Cauchy distribut
@Fig. 11~b!#.

V. PHYSICAL INTERPRETATION AND CONCLUSIONS

We have presented a statistical theory of ionization ca
lyzed by chaos-assisted tunneling. The corresponding ph
cal picture is built of a single state, localized on a sta
island, and coupled~quantum mechanically, due to a finit
value of\) to the surrounding chaotic sea. Once the tunn
ing into the sea takes place, the diffusive chaotic excitat
leads finally to ionization.

A random matrix theory model allows us to determi
analytically the distribution of the energy shifts~induced by
the interaction with the chaotic sea! of the localized state, as
well as the distribution of its widths~ionization rates!, in the
perturbative limit. Nonperturbative corrections may also
understood and estimated. We concentrated on the sim
case of single-channel ionization: The model then is cha
terized by few parameters only. In that case, the distributi
of both shifts and widths have long algebraic tails explain
the large scale fluctuations of both quantities. These fluc
tions are a characteristic feature of chaos-assisted tunne
processes. Fluctuations~and universal properties of fluctua
tions! are well established properties of chaotic systems
the ionization brought about by chaos-assisted tunneling,
combination of a weak tunneling process with chaotic co
pling to the continuum increases dramatically the range
the fluctuations, by extending the distribution considera
towards extremely small widths, i.e., metastable states.

The developed theory has been confronted with numer
data obtained for the shifts and widths of nonspreading w
packets~states localized on a stable 1:1 resonance island
tween the Kepler frequency of a Rydberg electron and
frequency of an externally applied microwave field of eith
linear or circular polarization!, a system accessible to prese
experiments. The numerical data have been obtained for
plified models of the atom: a one-dimensional atom in LP
and a two-dimensional atom in CPMs. This allowed us
study the frequency range well in the experimental regi
The important atomic states building the wave packet co
spond to the principal quantum numbers used in the exp
ments. The principal reason for the simplification is that fu
three-dimensional numerical calculations, although poss
for a single set of parameters as exemplified by us be
@24#, are still prohibitive for present day computers. Mo
importantly, however, the statistical properties of nonspre
ing wave packet states are not affected by the reduced
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mensionality of the atom as tested by us for the thr
dimensional CPM case.

It turns out that the statistical theory developed descri
very well the numerical data in the range of the single ch
nel decay, which makes us confident that it contains the
sential ingredients of the physical process. The quality of
fits allows one to extract order from chaos, that is, to extr
from strongly fluctuating quantities~see Fig. 1! the physical
parameters describing the coupling of the nonspreading w
packet to the chaotic states~tunneling rate! and the ionization
rate of chaotic states. These parameters exhibit reason
smooth behavior. For example, we have shown that sec
ary classical resonances inside the regular island increas
tunneling rate. As an unambiguous signature of a tunne
process we also could demonstrate the exponential decr
of the tunneling rate with the principal quantum number.

Let us emphasize the importance of the fluctuations of
ionization rate~width! of nonspreading wave packets in th
hydrogen atom. In a real experiment, it is likely that t
atoms will experience various values of the microwave fi
strength, either because of spatial inhomogeneities or
cause they are prepared by a slow increase of the microw
strength as explained in@48#, and more or less average th
short range fluctuations of the ionization rate. In the total,
residual ionization of the atom will be given by the avera
ionization rate, a quantity that is dominated by the fluctu
tions towards large ionization rates and can be significa
larger than the typical ionization rate. For example, for
data in Fig. 1 discussed in this paper, the average ioniza
rate is about 6.4 times larger than the typical ionization ra
In the limit of the perturbative regime, the ratio of the tw
even diverges. This is an example of physical processe
Lévy flights where the physics of a fluctuating system
dominated by rare events.

From a practical point of view, the present study also te
us that the lifetimes of the nonspreading wave packets ei
in CPMs or in LPMs are rather long. Indeed, forn0560 and
F050.0426~these values are representative of what could
used in a real experiment, with microwave frequency arou
30 GHz and microwave field amplitude of the order of
V/cm! the typical lifetime of the nonspreading wave pack
in CPMs, due to ionization catalyzed by chaos-assisted
neling, is of the order of several microseconds, that is ab
100 000 Kepler periods. However, fluctuations by one or t
orders of magnitude are expected around this typical va
Even the longest lifetimes should be shorter than the nat
lifetime, due to spontaneous emission, of the order of a fr
tion of a second. At highern0.100, the typical ionization
lifetime is of the order of several milliseconds, i.e., 1
3106 Kepler periods, but still shorter than the lifetime in
duced by spontaneous emission@28#. Hence, for practical
experiments in CPMs, spontaneous emission should not
problem. In LPMs, spontaneous emission is a slightly str
ger effect, but largely dominated by chaos-assisted tunne
ionization forn0<100 @27#.

Finally, the physical situation and the model describ
here are not restricted to atomic nonspreading wave pac
It should describe physical systems where a given stat
weakly coupled to a dense family of completely differe
other states that can decay on a rather long time scale. T
the effective decay rate of the initial state, induced by
-
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coupling with the family of decaying states, should pres
huge fluctuations. An example is given in nuclear physics
the so-called superdeformed nuclei@51# where the ground
state of a superdeformed nucleus can only decay by coup
to highly excited~hence chaotic! states of the nondeforme
nucleus. Our model then predicts the distribution of lifetim
of superdeformed nuclei.
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APPENDIX: DERIVATION OF SHIFT AND WIDTH
DISTRIBUTIONS

We derive here the shift and width distributions for th
random matrix model described in Sec. III. Starting from t
Hamiltonian ~11! we want to compute the complex eige
value close to zero. The real part will be the desired shift a
twice the imaginary part taken with the minus sign the d
sired width.

We are interested in the case where the real couplins
and the imaginary couplingg are sufficiently small for the
localized state not to be strongly mixed with the chao
states. If this condition is not fulfilled, the localized sta
cannot be assigned to a given eigenstate of the fullH matrix
and the shift and width are ill-defined quantities. In the fo
lowing, we thus consider the perturbative limit where boths
andg are much smaller thanD. Typically, the localized state
is then weakly coupled to the chaotic sea, itself wea
coupled to the continuum. It may happen that the localiz
state is accidentally almost degenerate with a chaotic eig
state of H0 , bringing back the problem of assigning th
strongly mixed state. However, this is a rare event, which
it is shown below, affects the tails of the distributions on
In the generic case, the couplings are weak and the en
shift and the width can be calculated perturbatively.

There are two small parameters for the perturbative an
sis, namely,s/D andg/D. At first order in these small pa
rameters, there is no effect on the energy of the locali
state~no diagonal element!. On the other hand, the localize
state is contaminated at first order ins/D by the chaotic
states. The perturbed eigenstateu 0̃& can be written as

u 0̃&5u0&1s
1

H0
uV&, ~A1!

whereu0& denotes the unperturbed localized state anduV& is
theN-component vector describing the coupling of the loc
ized state to the chaotic states. It can be also expanded o
eigenstatesuf i& of H0 with eigenvaluesEi as
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u 0̃&5u0&1s (
i 51,N

^f i uV&uf i&
Ei

. ~A2!

This admixture in the eigenstate results in a~real! energy
shift at second order, i.e., proportional tos2, given by

s52s2K VU 1

H0
UVL 52s2(

i 51

N z^f i uV& z2

Ei
. ~A3!

Also, as the imaginary coupling2 iW @Eqs. ~11! and ~14!#
has nonzero diagonal elements, this implies a nonzero im
nary part of the energy at orders2g or, more precisely, a
width given by

w5gs2ZK WU 1

H0
UVL Z25gs2U(

i 51

N
^Wuf i&^f i uV&

Ei
U2

.

~A4!

Sincew appears as the square of a simpler quantityx, i.e.,

w5x2, ~A5!

with x given by,

x5Ags K WU 1

H0
UVL 5Ags (

i 51,N

^Wuf i&^f i uV&
Ei

,

~A6!

we will consider in the following the statistical distributio
of x rather thanw.

To obtain the statistical distributions within our rando
matrix model, one has to average over the random ensem
i.e., over the various Gaussian random variables: theN com-
ponents of uV&, the N components of uW&, and the
N(N11)/2 independent matrix elements ofH0 . Because of
the orthogonal invariance ofH0 , the averaging overuV& and
uW& is straightforward. Thus the distribution of shift is e
sentially the distribution of diagonal elements of 1/H0 , while
the distribution ofx ~square root of the width! is essentially
the distribution of matrix element of 1/H0 between two sta-
tistically independent vectors.

Since we are interested in the situation where a la
number of chaotic states are coupled to the localized s
we will take the limitN→`, keeping the mean level spacin
equal to a constantD and keepingg ands fixed, such that
the average coupling between a chaotic state and the lo
ized state is independent ofN. Then, in the sums in Eqs
~A3! and~A6!, there are more and more terms that contrib
as N is increased, but corresponding to larger and lar
energy denominators 1/Ei so that the total sum has a wel
defined limit asN→`. Yet, in this limit, the scalar produc
^WuV&5(^Wuf i&^f i uV& appears as the sum of the produ
of independent Gaussian variables, which typically avera
to a small quantity. In other words, in theN→` limit, uV&
and uW& appear as independent orthogonal vectors, so
the distribution ofx values is essentially the distribution o
nondiagonal elements of 1/H0 . Corrections due to nonexac
orthogonality will modify the distribution at order 1/N only.

The calculation of the sums in Eqs.~A3! and ~A6! is not
completely straightforward because the various energie
the denominators arecorrelatedif H0 is a GOE random ma
gi-

le,
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trix. Before studying this case, let us consider the simp
case where the spectrum ofH0 is a set ofuncorrelatedei-
genvalues, i.e., a Poisson spectrum. Then all quantities in
numerators are uncorrelated random Gaussian variables
denominators are uncorrelated energies with mean den
1/D. In this case, the calculation can be done exactly
shown in Refs.@15,52# and the distribution is a Cauchy dis
tribution whose half-width is proportional to the average a
solute value of the numerator, that is,

PPoisson~s!5
1

p

s0

s0
21s2

, ~A7!

with

s05p
s2z^f i uV& z2

D
, ~A8!

where the overbar denotes the average value over the ran
matrix ensemble. Here it is simply the variance of the co
ponents ofuV&, which is 1 in our model~see Sec. III!. Hence

s05
ps2

D
. ~A9!

Similarly, one gets

PPoisson~x!5
1

p

x0

x0
21x2

, ~A10!

with

x05p
sAg z^Wuf i&^f i uV& z

D
. ~A11!

The average over the random ensemble~Gaussian integral!
gives a 2/p factor, resulting in

x05
2sAg

D
. ~A12!

For the width itself, we obtain the distribution given in Se
III @Eq. ~20!#.

We now turn to the random matrix case, whereH0 is a
standard real symmetric random matrix belonging to
GOE. In Ref.@53#, Brouwer introduced a slightly differen
class of random matrices, namely, the Lorentzian orthogo
ensemble~LOE!, which has the Lorentzian probability dis
tribution

P~H !5S l2

p D N~N11!/4

)
i 51,N

G~ i !

G~ i /2!
det@~l21H2!2~N11!/2#,

~A13!

wherel is a parameter describing the width of the distrib
tion.

As shown in Ref.@53#, although the LOE has differen
global statistical properties~e.g., density of states! from the
GOE, it has locally the same joint probability distributio
function of the eigenvalues and consequently the same s
ing distribution, the same short range correlation functio
etc. The mean level spacing close to the center of the s
trum ~energy equal to zero! is
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D5
lp

N
. ~A14!

Hence, to calculate the shift and the width distribution,
can replaceH0 by a random matrix of the LOE. The LOE
has the nice property@53# that if H0 is distributed according
to LOE, then 1/H0 is also distributed according to LOE wit
width 1/l. Morevoer, if H0 is distributed according to the
LOE, then every submatrix ofH0 is also distributed accord
ing to LOE, with the same width@53#. The price to pay for
such nice properties is that one loses the statistical inde
dence of the various matrix elements valid for the GOE, i
P(H) cannot be factorized as a product of distributions
elementary matrix elements. However, this is not a prob
for the quantities we are interested in. The distribution
shifts is obtained straightforwardly, as it is a diagonal e
ment of 1/H0 , and hence a 131 submatrix of 1/H0 , which,
from the two properties just described, is given by Eq.~A13!
for N51 andl5p/ND. The result is exactly equal to th
Poisson result, i.e., the Cauchy~or Lorentzian! distribution
of Eq. ~A9!.

For the width, the situation is slightly more complicate
as we need to know the distribution of a nondiagonal e
ment of 1/H0 . The same trick works, but we have now
extract for the LOE matrix 1/H0 a 232 submatrix and con-
sider the distribution of nondiagonal elements, that is, av
age over the two diagonal elements

P~H12!5E E P~H !dH11dH22, ~A15!

whereP(H) is given by Eq.~A13! for N52 andl5p/ND.
The integral over diagonal elements is trivial. The result
the following distribution for the square root of the width:

PGOE~x!5
2x08

p2~x08
21x2!

F11
arcsinh~x/x08!x08

2

xAx08
21x2 G ,

~A16!

with

x085
psAg

D
. ~A17!

For the width itself, we obtain the distribution given in Se
III @Eq. ~22!#.

The GOE distribution~A16! has the same behavior as th
Cauchy distribution obtained for the Poisson ensem
~A10!, which is a constant value nearx50 followed by a
1/x2 decrease at large distance. In fact, the two distributi
are very similar with slightly different widths and are almo
impossible to distinguish by eye.
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The distributions obtained in the various cases agree
actly with numerically calculated distributions from a larg
number of realizations of the Poisson and GOE random
sembles. Note that the distributions obtained here have l
tails with an algebraic decay ass ~or x) tends to infinity. This
is unusual for quantities that are sums of statistically unc
related individual terms and, as a consequence of the ce
limit theorem, have usually Gaussian distributions. The r
son is that the central limit theorem cannot be used h
because the variance of each individual term in infinite;
Refs. @15,52#. The latter property is due to the 1/Ei depen-
dence, which decays only slowly for largeEi .

On a double-logarithmic scale~see Fig. 2! the distribution
of shifts shows two different regimes: constant near the
gin and an asymptotic 1/s2 behavior for large shifts. The
crossover between the two regimes is fors5s0 ; the latter
value @Eq. ~A9!# corresponds to the typical shift due to
chaotic level lying at a distanceD from the localized state
i.e., to the typical shift due to the nearest state. Hence la
energy shiftss@s0 are due to situations where one chao
level is much closer in energy thanD. In such a case, one
term is dominant in the sum~A3! and a two-level approxi-
mation can be used, which produces the correct 1/s2 behav-
ior. On the other hand, the ‘‘constant’’ regimes!s0 corre-
sponds to situations where the various terms in Eq.~A3!
interfere destructively, giving a total sum typically small
than the largest individual terms: This is an intrisica
‘‘multilevel’’ situation where quantum destructive interfe
ences play an important role. Exactly the same thing ta
place for the distribution of widths. The largest widths in t
w23/2 regime are obtained when a single level dominates
sum ~A6! while the w21/2 regime correspond to the multi
level situation.

Finally, let us discuss what happens when the perturba
approach breaks down. This takes place when one cha
level is very close to the localized level, closer than th
average couplings. There the strong mixing between stat
invalidate the expressions for the shift@Eq. ~A3!# and the
width @Eq. ~A6!#. The actual shift and width do not diverge
in contrast to the perturbative expressions. This means
the actual distribution cannot have an algebraic tail towa
infinity, but should show a cutoff when perturbation theo
breaks down. As explained above, this takes place for on
the Ei of the order ofs, corresponding to

scutoff.s, ~A18!

wcutoff.g, ~A19!

in agreement with our numerical observations.
@1# A. M. Ozorio de Almeida,Hamiltonian Systems: Chaos an
Quantization~Cambridge University Press, Cambridge, 198!;
M. C. Gutzwiller,Chaos in Classical and Quantum Mechani
~Springer-Verlag, New York, 1990!; L. E. Reichl,The Transi-
tion to Chaos: In Conservative Classical Systems: Quan
Manifestations~Springer-Verlag, New York 1992!.
@2# F. Haake, inQuantum Signatures of Chaos, edited by H.

Haken, Springer Series in Synergetics Vol. 54~Springer-
Verlag, Berlin, 1991!.

@3# Sh.-J. Chang and K.-J. Shi, Phys. Rev. A34, 7 ~1986!; R. V.



h

-

-

,

.

ys

.

A

ev

n

ical
R.

tum

the

m-

B

ter,

,

.

e-
on-

1474 57ZAKRZEWSKI, DELANDE, AND BUCHLEITNER
Jensen, M. M. Sanders, M. Saraceno, and B. Sundaram, P
Rev. Lett.63, 2771~1989!.

@4# M. Holthaus, Chaos Solitons Fractals5, 1143~1995!, and ref-
erences therein.

@5# E. Heller, Phys. Rev. Lett.53, 1515~1984!.
@6# I. C. Percival, J. Phys. B6, L229 ~1973!.
@7# V. P. Maslov and M. V. Fedoriuk,Semiclassical Approxima

tion in Quantum Mechanics~Reidel, Dordrecht, 1981!.
@8# A. J. Lichtenberg and M. A. Liberman,Regular and Chaotic

Dynamics~Springer-Verlag, New York, 1992!.
@9# W. A. Lin and L. E. Ballentine, Phys. Rev. Lett.65, 2927

~1990!; Phys. Rev. A45, 3637~1992!.
@10# F. Grossmann, T. Dittrich, P. Jung, and P. Ha¨nggi, Phys. Rev.

Lett. 67, 516 ~1991!; Z. Phys. B84, 315 ~1991!; J. Stat. Phys.
70, 229 ~1993!.

@11# J. Plata and J. M. Gomez Llorente, J. Phys. A25, L303 ~1992!.
@12# O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep.223, 43

~1993!.
@13# O. Bohigas, D. Boose´, R. Egydio de Carvalho, and V. Mar

vulle, Nucl. Phys. A560, 197 ~1993!.
@14# S. Tomsovic and D. Ullmo, Phys. Rev. E50, 145 ~1994!.
@15# F. Leyvraz and D. Ullmo, J. Phys. A29, 2529~1996!.
@16# P. Gerwinski and P. Sˇeba, Phys. Rev. E50, 3615~1994!.
@17# A. Buchleitner, the`se de doctorat, Universite´ Pierre et Marie

Curie, 1993~unpublished!; D. Delande and A. Buchleitner
Adv. At., Mol., Opt. Phys.35, 85 ~1994!; A. Buchleitner and
D. Delande, Phys. Rev. Lett.75, 1487~1995!; Chaos Solitons
Fractals5, 1125~1995!.

@18# I. Bialynicki-Birula, Maciej Kaliński, and J. H. Eberly, Phys
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@42# B. Grémaud, D. Delande, and J. C. Gay, Phys. Rev. Lett.70,

1615 ~1993!.
@43# K. Dupret, J. Zakrzewski, and D. Delande, Europhys. Lett.31,

251 ~1995!.
@44# See, e.g., M. F. Shlesinger, G. M. Zaslavsky, and J. Klaf

Nature~London! 263, 31 ~1993!; G. Zumofen and J. Klafter,
Phys. Rev. E47, 851 ~1993!; J. B. Bouchaud and A. Georges
Phys. Rep.195, 136 ~1990!.

@45# P. M. Koch and K. A. H. van Leeuwen, Phys. Rep.255, 289
~1995!.

@46# M. R. W. Bellermann, P. M. Koch, D. R. Mariani, and D
Richards, Phys. Rev. Lett.76, 892 ~1996!.

@47# A. Buchleitner and D. Delande, Phys. Rev. Lett.70, 33 ~1993!.
@48# J. Zakrzewski and D. Delande, J. Phys. B30, L87 ~1997!.
@49# S. Creagh and N. Whelan, Phys. Rev. Lett.77, 4975~1996!.
@50# P. Leboeuf and A. Mouchet, Phys. Rev. Lett.73, 1360~1994!.
@51# T. Bengtsson, I. Ragnarsson, and S. Åberg, Phys. Lett. B208,

39 ~1988!.
@52# P. A. Mello, in 1994 Les Houches Lectures, Session LXI, M

soscopic Quantum Physics, edited by E. Akkermans, G. M
tambaux, J. L. Pichard, and J. Zinn-Justin~North-Holland,
Amsterdam, 1995!, p. 435.

@53# P. W. Brouwer, Phys. Rev. B51, 16 878~1995!.


